
SOA: Challenges and
Solutions
SOA: Challenges and Solutions

White Paper
by Lori MacVittie



•

•

•
•

•

•

•

•

•
•

•
•
•
•
•

•

•
•

•

•

• •

•
•

•

•

•

•

•
•

•

•

Overview
The benefits of SOA (Service-Oriented Architecture) have been well documented,

but the challenges associated with an enterprise wide SOA deployment have not.

While the distributed nature of a SOA encourages reuse and provides a high level of

agility for the business, it can also give rise to real challenges in the delivery of SOA-

based applications.

XML is the core technology enabler of SOA-based applications. Its verbose nature,

inherent lack of security, and the increase in connections between applications and

services required result in a number of challenges that are well-understood, and that

have proven solutions.

Challenge
The challenge in delivering SOA-based applications lies in identifying where potential

problems will arise and addressing them as early in the deployment cycle as

possible. Application delivery controllers are well suited to addressing both the well-

understood and unanticipated issues associated with delivering SOA-based

applications. Incorporating an application delivery controller (ADC) into the

deployment plans for your SOA can prevent unnecessary delays and even the need

to re-architect portions of your SOA infrastructure—saving man hours, expense,

and headaches.

Solution
SOA is both an architectural design pattern and a deployment methodology. That's

a nice way of saying that no one can define what any particular SOA implementation

should look like. While there have been attempts by various vendors in a number of

vertical SOA markets to create best practices for SOA environments, these have

largely failed due to the rather dynamic and organizational-specific nature of SOA

implementations. Because the services that comprise an SOA are business-focused

and encapsulate business specific entities, there is no single agreed upon definition

of what must exist and how components are deployed in order to bear the title SOA.

There are, however, a set of guiding principles underlying SOA that can be

considered a framework around which discussions on common SOA attributes and

challenges can be based. The distributed nature of services, for example, is a

fundamental attribute of all SOA implementations and as such challenges

associated with that deployment model can be applied to all SOA environments,

regardless of their actual design or implementation.

1. An SOA is comprised of distributed business services and achieves business

value through the reuse of those services.

2. An SOA is based upon industry accepted open standards.

3. An SOA reduces time to market through loose coupling of service interfaces

and its underlying implementation, enabling agility.

4. An SOA is heterogeneous and applications comprise n-tiers that may vary

widely based on the business process activity around which its composite

services are built.

These common attributes result in a common set of challenges that all

organizations face and that must be addressed at some point in the implementation

process. SOA guiding principles suggest that consideration be given to the

architecture of the deployment environment and infrastructure upon which services

will be deployed and delivered before said services are put into production, in parallel

with service definition and development efforts.

Fortunately, most of the challenges associated with deploying SOA are common to

all web-based application deployments. The difference between SOA-based

applications and traditional applications is that these challenges are often faced by

implementers earlier in the application lifecycle due to the challenges associated with

its core technology enabler, XML.

SOA Basics
In most cases, a SOA will be implemented using a variety of standards, the most

common being HTTP, WSDL (Web Services Definition Language), SOAP (Simple

Object Access Protocol), and XML (eXtensible Markup Language).These latter three

standards work together to deliver messages between services much in the same

way as the post office.

WSDL  →   Entry in an address book 
HTTP  →   Postal carrier (transportation)  
SOAP  →   Envelope (encapsulation)  
XML   →   Letter (message) 

If you're sending a letter then it is assumed you already know where to send it. In a

SOA that information comes from the WSDL, which lists the transportation options

(HTTP, FTP, SMTP) available, the possible addressees (remote functions available),

and the format requirements for data sent to each addressee (XML).

The same way an envelope has an address, SOAP carries with it information about

where the message should be delivered and who should open it. In the case of

SOAP and SOA, the addressee is not a who, but a what, as the addressee is really

the name of a remote function that should process the message inside. Just like a

"real" envelope, SOAP has specific formatting requirements and failure to properly

place information in the right place can cause delivery or processing issues.

With this information you can build a message based on the format requirements

(XML-based), put it in an envelope address to the receiver (SOAP), and then drop it

in the mailbox (HTTP) and wait for a response.

If you are the receiver of this message, the message must be delivered to you, you

have to read (parse) the envelope and determine the correct addressee (remote

function). The message then must be passed to the appropriate addressee (remote

function) for processing. Once the correct addressee has the letter, they can then

read (parse) the message and process it according to their designated function.

You'll note that this process requires a lot of reading (parsing) and formatting of

data, from the actual data you want to transfer to the envelope to the transport layer.

It also has the effect of adding two "layers" to the stack that must be processed.

This is one of the challenges associated with SOA—the computational overhead

associated with parsing and processing XML. Current analysis of the impact of XML

parsing and processing on server utilization estimates that approximately 30% of a

server's resources are consumed simply by the parsing and processing of XML. As

a reference point, SSL processing was also estimated to consume 30% of a server's

resources. Unlike SSL, XML currently has no effective server-based solution to

alleviate this burden such as hardware assisted processing, thus the issue of

increasing performance of XML-based services and applications must necessarily lie

outside the server and in the network.

Obviously a single SOAP message does not an SOA make. An SOA can be thought

of as a distributed organization that makes use of the postal service (network) to

deliver messages that assign tasks (remote functions) to individual business units

(services).

There is also nothing that disallows services from being built upon other

technologies. REST (Representational State Transfer) is often used as an example of

an alternative technology upon which an SOA can be built. REST services do not

use SOAP, choosing instead to use the HTTP URI to specify the addressee of the

message and putting the message right into the HTTP body. If SOAP is analogous

to a letter, then REST messages are most like a postcard where the message is not

encapsulated at all.

An SOA can mix and match both technologies, as well as others, though the few

existing best practices documents and SOA consultants are quick to nudge—and

even push—organizations toward standardizing upon one or the other. As many of

the benefits of an SOA including interoperability and platform independence rely on

an open-standards foundation, this push is not necessarily a bad one.

Connection Management
Architecting the distributed services upon which an SOA is built involves the

identification of common business entities and their related functions that can be

encapsulated in a service. A company's inventory, for example, is a common

business entity that is likely shared across all business units. Querying and updating

that inventory are two common functions performed by applications upon the

inventory. Similarly, a customer entity likely exists that is common to all applications

within an organization, with a common set of functions that can be performed on

that customer such as querying, updating, or creating.

In the past these common functions and entities were often duplicated across all

applications needing to apply application-specific logic to them. This necessarily

meant that any changes to those entities resulted in the need to modify every

application which used those entities. This is an inefficient model which leaves open

the very real possibility that differences between applications will occur in the

handling of these entities. These differences are replicated into the data stores,

causing problems between disparate applications needing access to that data to

perform specific tasks. The duplication of function across multiple applications also

has a deleterious effect on the ability of an organization to affect rapid change due to

the time and effort involved in deploying a change to any shared entity.

SOA resolves these issues by removing common entities and their associated

functions and establishing them as an atomic entity of their own (a service) that is

shared by all applications. Changes to the logic or data structure associated with

that entity are now reduced to a single code-set, and assures consistency across

the enterprise.

Traditional Application Design

SOA Application Design

While an SOA certainly improves consistency of application logic and reduces the

time required to introduce a change to business entities or their underlying data

structure, you will note that it has introduced complexity in terms of the number of

connections required.

This increase in connections required can have a negative impact on performance if

services are physically distributed across the network. The overhead associated with

TCP connection management is applied directly to the computational cost of the

application, usually to the detriment the application's overall performance. Also note

that each intermediary (i.e., device or application that touches an XML message)

incurs both TCP session and XML parsing performance penalties. As the number of

services associated with a single application increase, so also does the total

application response time increase.

There are essentially two ways in which ADCs can address this challenge. The first

is based on accepted and proven connection management technologies. By

allowing an ADC to manage the myriad interconnects between services, it can

offload the burden of managing TCP sessions on servers and increase their overall

capacity.

Connection management technology reduces the burden of TCP on servers

The second way in which ADCs address the challenges of distributed services is by

providing a network platform on which shared network services can be hosted.

Many of these functions—security, data scrubbing and transformation,

authentication, and caching are application specific, and therefore network-focused

point solutions can't host these shared services. They can only be supported by an

ADC or on an application platform such as those offered by BEA, IBM, Oracle, and

Microsoft.

By moving applicable network-focused shared services to an ADC, it reduces the

complexity of the SOA by consolidating services into a single network-hosted

platform without sacrificing performance. Hosting shared network services on an

ADC also has the added benefit of alleviating unnecessary parsing of XML from the

services in your SOA. By validating the credentials of an incoming message before it

reaches the service, the service only parses those messages which are authorized

to invoke its operations. This principle applies equally as well to XML and web-

application threat defense measures. Rather than impede performance by

duplicating scans for common threats such as SQL injection, overly large message

sizes, cookie tampering, and XML-specific attacks, it makes sense to provide a

single, shared service through which the message is initially validated and verified as

being free of malicious content.

By verifying the message at the point of ingress, it alleviates the need for each

service to perform that same verification and thus reduces the processing burden

on their respective servers and increasing overall capacity.

Scalability
The high computational cost of parsing and processing XML reduces the overall

capacity of already burdened application servers. The issue with XML arises from its

text-based formatting, which must be parsed and converted into objects that the

application server can understand and manipulate. This process is called

marshalling, and the performance of this process is heavily dependent upon the

complexity of the data. Each element in the data must be created and many

functions called to assign values to its attributes. In most environments this process

is accomplished via serialization, which is treated as a form of I/O within the system.

I/O in general is resource-intensive, requiring a lot of memory and CPU cycles on the

server regardless of platform.

This process occurs twice; once when the message is received to transform the

XML into a machine readable format, and again when the response is transformed

back into XML to be returned.

Because of the drain on resources caused by this process, and any additional

processing required such as connections and queries to databases, application

servers on which services are deployed are rapidly driven to high CPU utilization

states and a dwindling pool of available memory. This reduces the capability of the

application server to process requests in a timely fashion and introduces delay as

the system tries to judiciously process each request by sharing its resources

amongst them.

The effect of heavy load upon application servers is a well-understood problem, with

existing solutions such as ADCs assisting in the horizontal scaling of these servers

to distribute requests. Scaling application servers in an SOA environment becomes

important earlier in the deployment process because of the additional burden placed

on application servers by the parsing and processing of XML.

It is not only the application servers in an SOA environment that are in need of

scalability services. Many organizations have turned to XML gateway appliances

such as those from Reactivity and IBM DataPower to offload the compute heavy

XML processing and to provide additional XML-specific functionality such as WS-

Security, schema validation, virtualization of services, and transformation via XSLT

(eXtensible Stylesheet Language Transformation). These devices are capable of

performing these functions on XML-based messages much more efficiently than an

application server, but lack many of the enterprise-class features required of a

network device such as advanced load balancing algorithms, proven failover

methods, and session management.

In order to scale these devices an ADC is still a necessity. Care should be taken

when considering when the issue of load balancing and XML appliances arises.

While these devices are capable of load balancing services, their implementations

are rudimentary and inflexible in their deployment options. These devices do not

provide the advanced health-checking capabilities of ADCs, and can therefore fail to

properly route traffic as they have no awareness of the state of the application as is

the case with an ADC.

The traditional round-robin or least-connection algorithms used by both XML

appliances and application server clustering capabilities fail to recognize the

resource intensive nature of XML and are therefore incapable of truly distributing

requests within a pool or cluster of servers in the most efficient manner. The

capability of an application server to handle the load of SOA messages is dependent

not only on the number of requests it is currently attempting to handle, but on the

resources currently available. This means that advanced algorithms and capabilities

are required to determine the current state of the application and the server, which is

one of the domains of expertise of ADCs. A server may have only one connection or

be "next" in line to receive a request, but if it is currently parsing and processing a

very large XML message it may not have the memory or CPU cycles to process

another message and still meet SLA goals for both messages.

Security
XML is text-based and therefore human-readable. It is also web-based and hosted

on the same application infrastructure as "traditional" web-based applications,

making it subject to traditional web attacks.

Many of the same vulnerabilities that have plagued web-based applications are

applicable to XML-based applications. SQL injection is a common method of

attempting to extract unauthorized information from corporate databases or to

wreak general havoc by deleting important data. SQL injection can be as easily

accomplished through an XML message as it is a traditional HTTP GET or POST

formatted message.

Because this type of attack is well-understood by existing solutions designed to

protect web-applications, these same solutions provide a measure of security for

XML-based applications. So, too, can other security techniques such as signature

scanning mechanisms that seek to discover hidden viruses within web-borne

messages.

While it is always preferred that developers produce secure code, the reality is that if

they responded in code to every threat that they would spend most of their time

coding protection against new attacks, testing those solutions and then deploying

them, only to start again the next day. Additionally, such security-in-code

techniques require duplication of code throughout an application, which can

negatively impact performance and increases the possibility of other errors being

introduced into the code. The duplication of code is an anathema to the guiding

principles of SOA, which seeks to reduce the costs and time to market for software

solutions through the identification of such shared services.

By employing an application firewall to mitigate the risks associated with SOA and

distributed service environments, the principles of an SOA are upheld while

protecting applications from these types of well-understood threats. Moving as

much application security to the point of ingress has the added benefit of improving

performance, as messages that are clearly malicious never reach the application

server, thus reducing the burden on application infrastructure.

Bandwidth
A concern of many regarding XML is the increased size of messages flowing

between systems. Indeed, the SOAP envelope used by web services to carry the

XML messages itself adds a minimum of 256 bytes to every message, though

usually the increase is much higher.

The verbose nature of XML means that even the smallest of messages will become

approximately twice as large as the same message formatting as HTTP POST/GET

name-value pairs. When these messages are being transferred between servers in

the data center this increase oft has a negligible effect on bandwidth and transfer

times, owing to the fat nature of data center backbones. But with increased use of

Asynchronous JavaScript and XML (AJAX) as the basis for user-interfaces that

interact with SOA-based back end systems, it is important to consider the effect of

these increasingly large messages on delivery times to the client.

In addition to the potential use of AJAX clients to access SOA services, there is the

very real possibility that external partners and customers may be accessing services

via the public Internet, over an uncontrollable and often unpredictable public

network. In any case in which clients are accessing services via a public network

there is the possibility that a disparity exists between the client's ability to receive

responses as quickly as the server can send them. This has the effect of forcing

servers to segment data into small chunks that the client can easily consume, but

increases the total time required to deliver the content.

This ties up the application and web server, reducing the total number of clients it

can serve at any given time. Application delivery controllers address this issue by

employing a technique often called "content spooling." Content spooling allows an

ADC to mediate between the client and server and allows the server to send content

as fast as possible to the mediating device. The ADC then takes on the

responsibility of spoon-feeding that content to the client, allowing the application or

web server to handle more requests.

Another challenge arising from the use of XML to transport data is, however, that

messages are all too often exceedingly fat. Message sizes in the 100's of kilobytes

are not uncommon, with messages reaching into the gigabytes in size less

common, but not unheard of.

As with the challenges related to the size of HTML and other text-based message

formats, the issues associated with the size of messages are easily addressed by

the right solution. A number of acceleration technologies exist today that are

capable of employing a number of compression techniques to reduce the overall

size of messages, thereby decreasing the time to transfer between server and client.

Industry standard compression technologies, stripping of white space, and other

data reduction technologies exist solely to respond to this challenge and reduce the

impact of large messages on the application infrastructure and delivery network.

Application acceleration-specific products as well as many of the features

associated with ADCs can provide many of these capabilities, as well as advanced

mechanisms for assisting with issues only found in browser-based applications

such as artificially imposed connection limitations that inhibit AJAX and browser-

based XML technologies from performing at full capacity. Dynamic content caching

is as applicable to XML as it is to HTML and related text-based formats, and can

increase the performance and capacity of SOA-based deployments dramatically.

WAN optimization controllers, as well, can provide additional improvements in

remote-office scenarios by taking advantage of symmetric data reduction

capabilities.

Conclusion
Many of the challenges associated with SOA deployments are the same challenges

we've encountered when deploying traditional web-based applications. The

underlying causes of these challenges may differ in a SOA, but the solutions to

address those challenges remain the same. The key to addressing SOA-related

challenges is to identify them as early as possible and include the appropriate

solution in the architecture to reduce the possibility of re-architecture being required

in a post-deployment environment.

Chal lenge Impact ADC Solut ion Benefit

Exponential
increase in
connections

Overhead of TCP connection
management adds to burden on servers
Additional hops add additional latency

Connection management
Hosting shared services

Reduces number of
servers required,
lowering costs
Reduces complexity and
time to manage
Maintains availability and
increases performance
Reduces requirement for
duplication of
functionality in deployed
services

XML
Message
size

More bandwidth consumed
More resources consumed to
parse/process messages

Content spooling
Compression
Caching
Hosting shared services
QoS

Increases capacity of
servers, reducing costs
and increasing
operational efficiency
Mitigates risk of attack
Prioritizes messages to
ensure SLA compliance

Scalability XML parsing is compute intensive and
requires horizontally scalable
infrastructure
XML appliances that offload XML
specific duties do not support
persistence, failover, or advanced load
balancing capabilities

ADCs support
persistence, advanced
load balancing capabilities
and failover scenarios

Maintains availability of
services
Increases performance
Protects investments in
technology by ensuring
horizontal scalability
Supports necessary
capabilities lacking in
other solutions

Security Exploitation of vulnerabilities in
application infrastructure
Theft of sensitive data

Application firewall
capabilities
Content scrubbing
Data validation

Prevents attacks from
reaching application
infrastructure
Improves performance of
application infrastructure
by reducing duplication
of code

1

WHITE PAPER

SOA: Challenges and Solutions
®



•

•

•
•

•

•

•

•

•
•

•
•
•
•
•

•

•
•

•

•

• •

•
•

•

•

•

•

•
•

•

•

Overview
The benefits of SOA (Service-Oriented Architecture) have been well documented,

but the challenges associated with an enterprise wide SOA deployment have not.

While the distributed nature of a SOA encourages reuse and provides a high level of

agility for the business, it can also give rise to real challenges in the delivery of SOA-

based applications.

XML is the core technology enabler of SOA-based applications. Its verbose nature,

inherent lack of security, and the increase in connections between applications and

services required result in a number of challenges that are well-understood, and that

have proven solutions.

Challenge
The challenge in delivering SOA-based applications lies in identifying where potential

problems will arise and addressing them as early in the deployment cycle as

possible. Application delivery controllers are well suited to addressing both the well-

understood and unanticipated issues associated with delivering SOA-based

applications. Incorporating an application delivery controller (ADC) into the

deployment plans for your SOA can prevent unnecessary delays and even the need

to re-architect portions of your SOA infrastructure—saving man hours, expense,

and headaches.

Solution
SOA is both an architectural design pattern and a deployment methodology. That's

a nice way of saying that no one can define what any particular SOA implementation

should look like. While there have been attempts by various vendors in a number of

vertical SOA markets to create best practices for SOA environments, these have

largely failed due to the rather dynamic and organizational-specific nature of SOA

implementations. Because the services that comprise an SOA are business-focused

and encapsulate business specific entities, there is no single agreed upon definition

of what must exist and how components are deployed in order to bear the title SOA.

There are, however, a set of guiding principles underlying SOA that can be

considered a framework around which discussions on common SOA attributes and

challenges can be based. The distributed nature of services, for example, is a

fundamental attribute of all SOA implementations and as such challenges

associated with that deployment model can be applied to all SOA environments,

regardless of their actual design or implementation.

1. An SOA is comprised of distributed business services and achieves business

value through the reuse of those services.

2. An SOA is based upon industry accepted open standards.

3. An SOA reduces time to market through loose coupling of service interfaces

and its underlying implementation, enabling agility.

4. An SOA is heterogeneous and applications comprise n-tiers that may vary

widely based on the business process activity around which its composite

services are built.

These common attributes result in a common set of challenges that all

organizations face and that must be addressed at some point in the implementation

process. SOA guiding principles suggest that consideration be given to the

architecture of the deployment environment and infrastructure upon which services

will be deployed and delivered before said services are put into production, in parallel

with service definition and development efforts.

Fortunately, most of the challenges associated with deploying SOA are common to

all web-based application deployments. The difference between SOA-based

applications and traditional applications is that these challenges are often faced by

implementers earlier in the application lifecycle due to the challenges associated with

its core technology enabler, XML.

SOA Basics
In most cases, a SOA will be implemented using a variety of standards, the most

common being HTTP, WSDL (Web Services Definition Language), SOAP (Simple

Object Access Protocol), and XML (eXtensible Markup Language).These latter three

standards work together to deliver messages between services much in the same

way as the post office.

WSDL  →   Entry in an address book 
HTTP  →   Postal carrier (transportation)  
SOAP  →   Envelope (encapsulation)  
XML   →   Letter (message) 

If you're sending a letter then it is assumed you already know where to send it. In a

SOA that information comes from the WSDL, which lists the transportation options

(HTTP, FTP, SMTP) available, the possible addressees (remote functions available),

and the format requirements for data sent to each addressee (XML).

The same way an envelope has an address, SOAP carries with it information about

where the message should be delivered and who should open it. In the case of

SOAP and SOA, the addressee is not a who, but a what, as the addressee is really

the name of a remote function that should process the message inside. Just like a

"real" envelope, SOAP has specific formatting requirements and failure to properly

place information in the right place can cause delivery or processing issues.

With this information you can build a message based on the format requirements

(XML-based), put it in an envelope address to the receiver (SOAP), and then drop it

in the mailbox (HTTP) and wait for a response.

If you are the receiver of this message, the message must be delivered to you, you

have to read (parse) the envelope and determine the correct addressee (remote

function). The message then must be passed to the appropriate addressee (remote

function) for processing. Once the correct addressee has the letter, they can then

read (parse) the message and process it according to their designated function.

You'll note that this process requires a lot of reading (parsing) and formatting of

data, from the actual data you want to transfer to the envelope to the transport layer.

It also has the effect of adding two "layers" to the stack that must be processed.

This is one of the challenges associated with SOA—the computational overhead

associated with parsing and processing XML. Current analysis of the impact of XML

parsing and processing on server utilization estimates that approximately 30% of a

server's resources are consumed simply by the parsing and processing of XML. As

a reference point, SSL processing was also estimated to consume 30% of a server's

resources. Unlike SSL, XML currently has no effective server-based solution to

alleviate this burden such as hardware assisted processing, thus the issue of

increasing performance of XML-based services and applications must necessarily lie

outside the server and in the network.

Obviously a single SOAP message does not an SOA make. An SOA can be thought

of as a distributed organization that makes use of the postal service (network) to

deliver messages that assign tasks (remote functions) to individual business units

(services).

There is also nothing that disallows services from being built upon other

technologies. REST (Representational State Transfer) is often used as an example of

an alternative technology upon which an SOA can be built. REST services do not

use SOAP, choosing instead to use the HTTP URI to specify the addressee of the

message and putting the message right into the HTTP body. If SOAP is analogous

to a letter, then REST messages are most like a postcard where the message is not

encapsulated at all.

An SOA can mix and match both technologies, as well as others, though the few

existing best practices documents and SOA consultants are quick to nudge—and

even push—organizations toward standardizing upon one or the other. As many of

the benefits of an SOA including interoperability and platform independence rely on

an open-standards foundation, this push is not necessarily a bad one.

Connection Management
Architecting the distributed services upon which an SOA is built involves the

identification of common business entities and their related functions that can be

encapsulated in a service. A company's inventory, for example, is a common

business entity that is likely shared across all business units. Querying and updating

that inventory are two common functions performed by applications upon the

inventory. Similarly, a customer entity likely exists that is common to all applications

within an organization, with a common set of functions that can be performed on

that customer such as querying, updating, or creating.

In the past these common functions and entities were often duplicated across all

applications needing to apply application-specific logic to them. This necessarily

meant that any changes to those entities resulted in the need to modify every

application which used those entities. This is an inefficient model which leaves open

the very real possibility that differences between applications will occur in the

handling of these entities. These differences are replicated into the data stores,

causing problems between disparate applications needing access to that data to

perform specific tasks. The duplication of function across multiple applications also

has a deleterious effect on the ability of an organization to affect rapid change due to

the time and effort involved in deploying a change to any shared entity.

SOA resolves these issues by removing common entities and their associated

functions and establishing them as an atomic entity of their own (a service) that is

shared by all applications. Changes to the logic or data structure associated with

that entity are now reduced to a single code-set, and assures consistency across

the enterprise.

Traditional Application Design

SOA Application Design

While an SOA certainly improves consistency of application logic and reduces the

time required to introduce a change to business entities or their underlying data

structure, you will note that it has introduced complexity in terms of the number of

connections required.

This increase in connections required can have a negative impact on performance if

services are physically distributed across the network. The overhead associated with

TCP connection management is applied directly to the computational cost of the

application, usually to the detriment the application's overall performance. Also note

that each intermediary (i.e., device or application that touches an XML message)

incurs both TCP session and XML parsing performance penalties. As the number of

services associated with a single application increase, so also does the total

application response time increase.

There are essentially two ways in which ADCs can address this challenge. The first

is based on accepted and proven connection management technologies. By

allowing an ADC to manage the myriad interconnects between services, it can

offload the burden of managing TCP sessions on servers and increase their overall

capacity.

Connection management technology reduces the burden of TCP on servers

The second way in which ADCs address the challenges of distributed services is by

providing a network platform on which shared network services can be hosted.

Many of these functions—security, data scrubbing and transformation,

authentication, and caching are application specific, and therefore network-focused

point solutions can't host these shared services. They can only be supported by an

ADC or on an application platform such as those offered by BEA, IBM, Oracle, and

Microsoft.

By moving applicable network-focused shared services to an ADC, it reduces the

complexity of the SOA by consolidating services into a single network-hosted

platform without sacrificing performance. Hosting shared network services on an

ADC also has the added benefit of alleviating unnecessary parsing of XML from the

services in your SOA. By validating the credentials of an incoming message before it

reaches the service, the service only parses those messages which are authorized

to invoke its operations. This principle applies equally as well to XML and web-

application threat defense measures. Rather than impede performance by

duplicating scans for common threats such as SQL injection, overly large message

sizes, cookie tampering, and XML-specific attacks, it makes sense to provide a

single, shared service through which the message is initially validated and verified as

being free of malicious content.

By verifying the message at the point of ingress, it alleviates the need for each

service to perform that same verification and thus reduces the processing burden

on their respective servers and increasing overall capacity.

Scalability
The high computational cost of parsing and processing XML reduces the overall

capacity of already burdened application servers. The issue with XML arises from its

text-based formatting, which must be parsed and converted into objects that the

application server can understand and manipulate. This process is called

marshalling, and the performance of this process is heavily dependent upon the

complexity of the data. Each element in the data must be created and many

functions called to assign values to its attributes. In most environments this process

is accomplished via serialization, which is treated as a form of I/O within the system.

I/O in general is resource-intensive, requiring a lot of memory and CPU cycles on the

server regardless of platform.

This process occurs twice; once when the message is received to transform the

XML into a machine readable format, and again when the response is transformed

back into XML to be returned.

Because of the drain on resources caused by this process, and any additional

processing required such as connections and queries to databases, application

servers on which services are deployed are rapidly driven to high CPU utilization

states and a dwindling pool of available memory. This reduces the capability of the

application server to process requests in a timely fashion and introduces delay as

the system tries to judiciously process each request by sharing its resources

amongst them.

The effect of heavy load upon application servers is a well-understood problem, with

existing solutions such as ADCs assisting in the horizontal scaling of these servers

to distribute requests. Scaling application servers in an SOA environment becomes

important earlier in the deployment process because of the additional burden placed

on application servers by the parsing and processing of XML.

It is not only the application servers in an SOA environment that are in need of

scalability services. Many organizations have turned to XML gateway appliances

such as those from Reactivity and IBM DataPower to offload the compute heavy

XML processing and to provide additional XML-specific functionality such as WS-

Security, schema validation, virtualization of services, and transformation via XSLT

(eXtensible Stylesheet Language Transformation). These devices are capable of

performing these functions on XML-based messages much more efficiently than an

application server, but lack many of the enterprise-class features required of a

network device such as advanced load balancing algorithms, proven failover

methods, and session management.

In order to scale these devices an ADC is still a necessity. Care should be taken

when considering when the issue of load balancing and XML appliances arises.

While these devices are capable of load balancing services, their implementations

are rudimentary and inflexible in their deployment options. These devices do not

provide the advanced health-checking capabilities of ADCs, and can therefore fail to

properly route traffic as they have no awareness of the state of the application as is

the case with an ADC.

The traditional round-robin or least-connection algorithms used by both XML

appliances and application server clustering capabilities fail to recognize the

resource intensive nature of XML and are therefore incapable of truly distributing

requests within a pool or cluster of servers in the most efficient manner. The

capability of an application server to handle the load of SOA messages is dependent

not only on the number of requests it is currently attempting to handle, but on the

resources currently available. This means that advanced algorithms and capabilities

are required to determine the current state of the application and the server, which is

one of the domains of expertise of ADCs. A server may have only one connection or

be "next" in line to receive a request, but if it is currently parsing and processing a

very large XML message it may not have the memory or CPU cycles to process

another message and still meet SLA goals for both messages.

Security
XML is text-based and therefore human-readable. It is also web-based and hosted

on the same application infrastructure as "traditional" web-based applications,

making it subject to traditional web attacks.

Many of the same vulnerabilities that have plagued web-based applications are

applicable to XML-based applications. SQL injection is a common method of

attempting to extract unauthorized information from corporate databases or to

wreak general havoc by deleting important data. SQL injection can be as easily

accomplished through an XML message as it is a traditional HTTP GET or POST

formatted message.

Because this type of attack is well-understood by existing solutions designed to

protect web-applications, these same solutions provide a measure of security for

XML-based applications. So, too, can other security techniques such as signature

scanning mechanisms that seek to discover hidden viruses within web-borne

messages.

While it is always preferred that developers produce secure code, the reality is that if

they responded in code to every threat that they would spend most of their time

coding protection against new attacks, testing those solutions and then deploying

them, only to start again the next day. Additionally, such security-in-code

techniques require duplication of code throughout an application, which can

negatively impact performance and increases the possibility of other errors being

introduced into the code. The duplication of code is an anathema to the guiding

principles of SOA, which seeks to reduce the costs and time to market for software

solutions through the identification of such shared services.

By employing an application firewall to mitigate the risks associated with SOA and

distributed service environments, the principles of an SOA are upheld while

protecting applications from these types of well-understood threats. Moving as

much application security to the point of ingress has the added benefit of improving

performance, as messages that are clearly malicious never reach the application

server, thus reducing the burden on application infrastructure.

Bandwidth
A concern of many regarding XML is the increased size of messages flowing

between systems. Indeed, the SOAP envelope used by web services to carry the

XML messages itself adds a minimum of 256 bytes to every message, though

usually the increase is much higher.

The verbose nature of XML means that even the smallest of messages will become

approximately twice as large as the same message formatting as HTTP POST/GET

name-value pairs. When these messages are being transferred between servers in

the data center this increase oft has a negligible effect on bandwidth and transfer

times, owing to the fat nature of data center backbones. But with increased use of

Asynchronous JavaScript and XML (AJAX) as the basis for user-interfaces that

interact with SOA-based back end systems, it is important to consider the effect of

these increasingly large messages on delivery times to the client.

In addition to the potential use of AJAX clients to access SOA services, there is the

very real possibility that external partners and customers may be accessing services

via the public Internet, over an uncontrollable and often unpredictable public

network. In any case in which clients are accessing services via a public network

there is the possibility that a disparity exists between the client's ability to receive

responses as quickly as the server can send them. This has the effect of forcing

servers to segment data into small chunks that the client can easily consume, but

increases the total time required to deliver the content.

This ties up the application and web server, reducing the total number of clients it

can serve at any given time. Application delivery controllers address this issue by

employing a technique often called "content spooling." Content spooling allows an

ADC to mediate between the client and server and allows the server to send content

as fast as possible to the mediating device. The ADC then takes on the

responsibility of spoon-feeding that content to the client, allowing the application or

web server to handle more requests.

Another challenge arising from the use of XML to transport data is, however, that

messages are all too often exceedingly fat. Message sizes in the 100's of kilobytes

are not uncommon, with messages reaching into the gigabytes in size less

common, but not unheard of.

As with the challenges related to the size of HTML and other text-based message

formats, the issues associated with the size of messages are easily addressed by

the right solution. A number of acceleration technologies exist today that are

capable of employing a number of compression techniques to reduce the overall

size of messages, thereby decreasing the time to transfer between server and client.

Industry standard compression technologies, stripping of white space, and other

data reduction technologies exist solely to respond to this challenge and reduce the

impact of large messages on the application infrastructure and delivery network.

Application acceleration-specific products as well as many of the features

associated with ADCs can provide many of these capabilities, as well as advanced

mechanisms for assisting with issues only found in browser-based applications

such as artificially imposed connection limitations that inhibit AJAX and browser-

based XML technologies from performing at full capacity. Dynamic content caching

is as applicable to XML as it is to HTML and related text-based formats, and can

increase the performance and capacity of SOA-based deployments dramatically.

WAN optimization controllers, as well, can provide additional improvements in

remote-office scenarios by taking advantage of symmetric data reduction

capabilities.

Conclusion
Many of the challenges associated with SOA deployments are the same challenges

we've encountered when deploying traditional web-based applications. The

underlying causes of these challenges may differ in a SOA, but the solutions to

address those challenges remain the same. The key to addressing SOA-related

challenges is to identify them as early as possible and include the appropriate

solution in the architecture to reduce the possibility of re-architecture being required

in a post-deployment environment.

Chal lenge Impact ADC Solut ion Benefit

Exponential
increase in
connections

Overhead of TCP connection
management adds to burden on servers
Additional hops add additional latency

Connection management
Hosting shared services

Reduces number of
servers required,
lowering costs
Reduces complexity and
time to manage
Maintains availability and
increases performance
Reduces requirement for
duplication of
functionality in deployed
services

XML
Message
size

More bandwidth consumed
More resources consumed to
parse/process messages

Content spooling
Compression
Caching
Hosting shared services
QoS

Increases capacity of
servers, reducing costs
and increasing
operational efficiency
Mitigates risk of attack
Prioritizes messages to
ensure SLA compliance

Scalability XML parsing is compute intensive and
requires horizontally scalable
infrastructure
XML appliances that offload XML
specific duties do not support
persistence, failover, or advanced load
balancing capabilities

ADCs support
persistence, advanced
load balancing capabilities
and failover scenarios

Maintains availability of
services
Increases performance
Protects investments in
technology by ensuring
horizontal scalability
Supports necessary
capabilities lacking in
other solutions

Security Exploitation of vulnerabilities in
application infrastructure
Theft of sensitive data

Application firewall
capabilities
Content scrubbing
Data validation

Prevents attacks from
reaching application
infrastructure
Improves performance of
application infrastructure
by reducing duplication
of code

WHITE PAPER

SOA: Challenges and Solutions
®

2

WHITE PAPER

SOA: Challenges and Solutions
®



•

•

•
•

•

•

•

•

•
•

•
•
•
•
•

•

•
•

•

•

• •

•
•

•

•

•

•

•
•

•

•

Overview
The benefits of SOA (Service-Oriented Architecture) have been well documented,

but the challenges associated with an enterprise wide SOA deployment have not.

While the distributed nature of a SOA encourages reuse and provides a high level of

agility for the business, it can also give rise to real challenges in the delivery of SOA-

based applications.

XML is the core technology enabler of SOA-based applications. Its verbose nature,

inherent lack of security, and the increase in connections between applications and

services required result in a number of challenges that are well-understood, and that

have proven solutions.

Challenge
The challenge in delivering SOA-based applications lies in identifying where potential

problems will arise and addressing them as early in the deployment cycle as

possible. Application delivery controllers are well suited to addressing both the well-

understood and unanticipated issues associated with delivering SOA-based

applications. Incorporating an application delivery controller (ADC) into the

deployment plans for your SOA can prevent unnecessary delays and even the need

to re-architect portions of your SOA infrastructure—saving man hours, expense,

and headaches.

Solution
SOA is both an architectural design pattern and a deployment methodology. That's

a nice way of saying that no one can define what any particular SOA implementation

should look like. While there have been attempts by various vendors in a number of

vertical SOA markets to create best practices for SOA environments, these have

largely failed due to the rather dynamic and organizational-specific nature of SOA

implementations. Because the services that comprise an SOA are business-focused

and encapsulate business specific entities, there is no single agreed upon definition

of what must exist and how components are deployed in order to bear the title SOA.

There are, however, a set of guiding principles underlying SOA that can be

considered a framework around which discussions on common SOA attributes and

challenges can be based. The distributed nature of services, for example, is a

fundamental attribute of all SOA implementations and as such challenges

associated with that deployment model can be applied to all SOA environments,

regardless of their actual design or implementation.

1. An SOA is comprised of distributed business services and achieves business

value through the reuse of those services.

2. An SOA is based upon industry accepted open standards.

3. An SOA reduces time to market through loose coupling of service interfaces

and its underlying implementation, enabling agility.

4. An SOA is heterogeneous and applications comprise n-tiers that may vary

widely based on the business process activity around which its composite

services are built.

These common attributes result in a common set of challenges that all

organizations face and that must be addressed at some point in the implementation

process. SOA guiding principles suggest that consideration be given to the

architecture of the deployment environment and infrastructure upon which services

will be deployed and delivered before said services are put into production, in parallel

with service definition and development efforts.

Fortunately, most of the challenges associated with deploying SOA are common to

all web-based application deployments. The difference between SOA-based

applications and traditional applications is that these challenges are often faced by

implementers earlier in the application lifecycle due to the challenges associated with

its core technology enabler, XML.

SOA Basics
In most cases, a SOA will be implemented using a variety of standards, the most

common being HTTP, WSDL (Web Services Definition Language), SOAP (Simple

Object Access Protocol), and XML (eXtensible Markup Language).These latter three

standards work together to deliver messages between services much in the same

way as the post office.

WSDL  →   Entry in an address book 
HTTP  →   Postal carrier (transportation)  
SOAP  →   Envelope (encapsulation)  
XML   →   Letter (message) 

If you're sending a letter then it is assumed you already know where to send it. In a

SOA that information comes from the WSDL, which lists the transportation options

(HTTP, FTP, SMTP) available, the possible addressees (remote functions available),

and the format requirements for data sent to each addressee (XML).

The same way an envelope has an address, SOAP carries with it information about

where the message should be delivered and who should open it. In the case of

SOAP and SOA, the addressee is not a who, but a what, as the addressee is really

the name of a remote function that should process the message inside. Just like a

"real" envelope, SOAP has specific formatting requirements and failure to properly

place information in the right place can cause delivery or processing issues.

With this information you can build a message based on the format requirements

(XML-based), put it in an envelope address to the receiver (SOAP), and then drop it

in the mailbox (HTTP) and wait for a response.

If you are the receiver of this message, the message must be delivered to you, you

have to read (parse) the envelope and determine the correct addressee (remote

function). The message then must be passed to the appropriate addressee (remote

function) for processing. Once the correct addressee has the letter, they can then

read (parse) the message and process it according to their designated function.

You'll note that this process requires a lot of reading (parsing) and formatting of

data, from the actual data you want to transfer to the envelope to the transport layer.

It also has the effect of adding two "layers" to the stack that must be processed.

This is one of the challenges associated with SOA—the computational overhead

associated with parsing and processing XML. Current analysis of the impact of XML

parsing and processing on server utilization estimates that approximately 30% of a

server's resources are consumed simply by the parsing and processing of XML. As

a reference point, SSL processing was also estimated to consume 30% of a server's

resources. Unlike SSL, XML currently has no effective server-based solution to

alleviate this burden such as hardware assisted processing, thus the issue of

increasing performance of XML-based services and applications must necessarily lie

outside the server and in the network.

Obviously a single SOAP message does not an SOA make. An SOA can be thought

of as a distributed organization that makes use of the postal service (network) to

deliver messages that assign tasks (remote functions) to individual business units

(services).

There is also nothing that disallows services from being built upon other

technologies. REST (Representational State Transfer) is often used as an example of

an alternative technology upon which an SOA can be built. REST services do not

use SOAP, choosing instead to use the HTTP URI to specify the addressee of the

message and putting the message right into the HTTP body. If SOAP is analogous

to a letter, then REST messages are most like a postcard where the message is not

encapsulated at all.

An SOA can mix and match both technologies, as well as others, though the few

existing best practices documents and SOA consultants are quick to nudge—and

even push—organizations toward standardizing upon one or the other. As many of

the benefits of an SOA including interoperability and platform independence rely on

an open-standards foundation, this push is not necessarily a bad one.

Connection Management
Architecting the distributed services upon which an SOA is built involves the

identification of common business entities and their related functions that can be

encapsulated in a service. A company's inventory, for example, is a common

business entity that is likely shared across all business units. Querying and updating

that inventory are two common functions performed by applications upon the

inventory. Similarly, a customer entity likely exists that is common to all applications

within an organization, with a common set of functions that can be performed on

that customer such as querying, updating, or creating.

In the past these common functions and entities were often duplicated across all

applications needing to apply application-specific logic to them. This necessarily

meant that any changes to those entities resulted in the need to modify every

application which used those entities. This is an inefficient model which leaves open

the very real possibility that differences between applications will occur in the

handling of these entities. These differences are replicated into the data stores,

causing problems between disparate applications needing access to that data to

perform specific tasks. The duplication of function across multiple applications also

has a deleterious effect on the ability of an organization to affect rapid change due to

the time and effort involved in deploying a change to any shared entity.

SOA resolves these issues by removing common entities and their associated

functions and establishing them as an atomic entity of their own (a service) that is

shared by all applications. Changes to the logic or data structure associated with

that entity are now reduced to a single code-set, and assures consistency across

the enterprise.

Traditional Application Design

SOA Application Design

While an SOA certainly improves consistency of application logic and reduces the

time required to introduce a change to business entities or their underlying data

structure, you will note that it has introduced complexity in terms of the number of

connections required.

This increase in connections required can have a negative impact on performance if

services are physically distributed across the network. The overhead associated with

TCP connection management is applied directly to the computational cost of the

application, usually to the detriment the application's overall performance. Also note

that each intermediary (i.e., device or application that touches an XML message)

incurs both TCP session and XML parsing performance penalties. As the number of

services associated with a single application increase, so also does the total

application response time increase.

There are essentially two ways in which ADCs can address this challenge. The first

is based on accepted and proven connection management technologies. By

allowing an ADC to manage the myriad interconnects between services, it can

offload the burden of managing TCP sessions on servers and increase their overall

capacity.

Connection management technology reduces the burden of TCP on servers

The second way in which ADCs address the challenges of distributed services is by

providing a network platform on which shared network services can be hosted.

Many of these functions—security, data scrubbing and transformation,

authentication, and caching are application specific, and therefore network-focused

point solutions can't host these shared services. They can only be supported by an

ADC or on an application platform such as those offered by BEA, IBM, Oracle, and

Microsoft.

By moving applicable network-focused shared services to an ADC, it reduces the

complexity of the SOA by consolidating services into a single network-hosted

platform without sacrificing performance. Hosting shared network services on an

ADC also has the added benefit of alleviating unnecessary parsing of XML from the

services in your SOA. By validating the credentials of an incoming message before it

reaches the service, the service only parses those messages which are authorized

to invoke its operations. This principle applies equally as well to XML and web-

application threat defense measures. Rather than impede performance by

duplicating scans for common threats such as SQL injection, overly large message

sizes, cookie tampering, and XML-specific attacks, it makes sense to provide a

single, shared service through which the message is initially validated and verified as

being free of malicious content.

By verifying the message at the point of ingress, it alleviates the need for each

service to perform that same verification and thus reduces the processing burden

on their respective servers and increasing overall capacity.

Scalability
The high computational cost of parsing and processing XML reduces the overall

capacity of already burdened application servers. The issue with XML arises from its

text-based formatting, which must be parsed and converted into objects that the

application server can understand and manipulate. This process is called

marshalling, and the performance of this process is heavily dependent upon the

complexity of the data. Each element in the data must be created and many

functions called to assign values to its attributes. In most environments this process

is accomplished via serialization, which is treated as a form of I/O within the system.

I/O in general is resource-intensive, requiring a lot of memory and CPU cycles on the

server regardless of platform.

This process occurs twice; once when the message is received to transform the

XML into a machine readable format, and again when the response is transformed

back into XML to be returned.

Because of the drain on resources caused by this process, and any additional

processing required such as connections and queries to databases, application

servers on which services are deployed are rapidly driven to high CPU utilization

states and a dwindling pool of available memory. This reduces the capability of the

application server to process requests in a timely fashion and introduces delay as

the system tries to judiciously process each request by sharing its resources

amongst them.

The effect of heavy load upon application servers is a well-understood problem, with

existing solutions such as ADCs assisting in the horizontal scaling of these servers

to distribute requests. Scaling application servers in an SOA environment becomes

important earlier in the deployment process because of the additional burden placed

on application servers by the parsing and processing of XML.

It is not only the application servers in an SOA environment that are in need of

scalability services. Many organizations have turned to XML gateway appliances

such as those from Reactivity and IBM DataPower to offload the compute heavy

XML processing and to provide additional XML-specific functionality such as WS-

Security, schema validation, virtualization of services, and transformation via XSLT

(eXtensible Stylesheet Language Transformation). These devices are capable of

performing these functions on XML-based messages much more efficiently than an

application server, but lack many of the enterprise-class features required of a

network device such as advanced load balancing algorithms, proven failover

methods, and session management.

In order to scale these devices an ADC is still a necessity. Care should be taken

when considering when the issue of load balancing and XML appliances arises.

While these devices are capable of load balancing services, their implementations

are rudimentary and inflexible in their deployment options. These devices do not

provide the advanced health-checking capabilities of ADCs, and can therefore fail to

properly route traffic as they have no awareness of the state of the application as is

the case with an ADC.

The traditional round-robin or least-connection algorithms used by both XML

appliances and application server clustering capabilities fail to recognize the

resource intensive nature of XML and are therefore incapable of truly distributing

requests within a pool or cluster of servers in the most efficient manner. The

capability of an application server to handle the load of SOA messages is dependent

not only on the number of requests it is currently attempting to handle, but on the

resources currently available. This means that advanced algorithms and capabilities

are required to determine the current state of the application and the server, which is

one of the domains of expertise of ADCs. A server may have only one connection or

be "next" in line to receive a request, but if it is currently parsing and processing a

very large XML message it may not have the memory or CPU cycles to process

another message and still meet SLA goals for both messages.

Security
XML is text-based and therefore human-readable. It is also web-based and hosted

on the same application infrastructure as "traditional" web-based applications,

making it subject to traditional web attacks.

Many of the same vulnerabilities that have plagued web-based applications are

applicable to XML-based applications. SQL injection is a common method of

attempting to extract unauthorized information from corporate databases or to

wreak general havoc by deleting important data. SQL injection can be as easily

accomplished through an XML message as it is a traditional HTTP GET or POST

formatted message.

Because this type of attack is well-understood by existing solutions designed to

protect web-applications, these same solutions provide a measure of security for

XML-based applications. So, too, can other security techniques such as signature

scanning mechanisms that seek to discover hidden viruses within web-borne

messages.

While it is always preferred that developers produce secure code, the reality is that if

they responded in code to every threat that they would spend most of their time

coding protection against new attacks, testing those solutions and then deploying

them, only to start again the next day. Additionally, such security-in-code

techniques require duplication of code throughout an application, which can

negatively impact performance and increases the possibility of other errors being

introduced into the code. The duplication of code is an anathema to the guiding

principles of SOA, which seeks to reduce the costs and time to market for software

solutions through the identification of such shared services.

By employing an application firewall to mitigate the risks associated with SOA and

distributed service environments, the principles of an SOA are upheld while

protecting applications from these types of well-understood threats. Moving as

much application security to the point of ingress has the added benefit of improving

performance, as messages that are clearly malicious never reach the application

server, thus reducing the burden on application infrastructure.

Bandwidth
A concern of many regarding XML is the increased size of messages flowing

between systems. Indeed, the SOAP envelope used by web services to carry the

XML messages itself adds a minimum of 256 bytes to every message, though

usually the increase is much higher.

The verbose nature of XML means that even the smallest of messages will become

approximately twice as large as the same message formatting as HTTP POST/GET

name-value pairs. When these messages are being transferred between servers in

the data center this increase oft has a negligible effect on bandwidth and transfer

times, owing to the fat nature of data center backbones. But with increased use of

Asynchronous JavaScript and XML (AJAX) as the basis for user-interfaces that

interact with SOA-based back end systems, it is important to consider the effect of

these increasingly large messages on delivery times to the client.

In addition to the potential use of AJAX clients to access SOA services, there is the

very real possibility that external partners and customers may be accessing services

via the public Internet, over an uncontrollable and often unpredictable public

network. In any case in which clients are accessing services via a public network

there is the possibility that a disparity exists between the client's ability to receive

responses as quickly as the server can send them. This has the effect of forcing

servers to segment data into small chunks that the client can easily consume, but

increases the total time required to deliver the content.

This ties up the application and web server, reducing the total number of clients it

can serve at any given time. Application delivery controllers address this issue by

employing a technique often called "content spooling." Content spooling allows an

ADC to mediate between the client and server and allows the server to send content

as fast as possible to the mediating device. The ADC then takes on the

responsibility of spoon-feeding that content to the client, allowing the application or

web server to handle more requests.

Another challenge arising from the use of XML to transport data is, however, that

messages are all too often exceedingly fat. Message sizes in the 100's of kilobytes

are not uncommon, with messages reaching into the gigabytes in size less

common, but not unheard of.

As with the challenges related to the size of HTML and other text-based message

formats, the issues associated with the size of messages are easily addressed by

the right solution. A number of acceleration technologies exist today that are

capable of employing a number of compression techniques to reduce the overall

size of messages, thereby decreasing the time to transfer between server and client.

Industry standard compression technologies, stripping of white space, and other

data reduction technologies exist solely to respond to this challenge and reduce the

impact of large messages on the application infrastructure and delivery network.

Application acceleration-specific products as well as many of the features

associated with ADCs can provide many of these capabilities, as well as advanced

mechanisms for assisting with issues only found in browser-based applications

such as artificially imposed connection limitations that inhibit AJAX and browser-

based XML technologies from performing at full capacity. Dynamic content caching

is as applicable to XML as it is to HTML and related text-based formats, and can

increase the performance and capacity of SOA-based deployments dramatically.

WAN optimization controllers, as well, can provide additional improvements in

remote-office scenarios by taking advantage of symmetric data reduction

capabilities.

Conclusion
Many of the challenges associated with SOA deployments are the same challenges

we've encountered when deploying traditional web-based applications. The

underlying causes of these challenges may differ in a SOA, but the solutions to

address those challenges remain the same. The key to addressing SOA-related

challenges is to identify them as early as possible and include the appropriate

solution in the architecture to reduce the possibility of re-architecture being required

in a post-deployment environment.

Chal lenge Impact ADC Solut ion Benefit

Exponential
increase in
connections

Overhead of TCP connection
management adds to burden on servers
Additional hops add additional latency

Connection management
Hosting shared services

Reduces number of
servers required,
lowering costs
Reduces complexity and
time to manage
Maintains availability and
increases performance
Reduces requirement for
duplication of
functionality in deployed
services

XML
Message
size

More bandwidth consumed
More resources consumed to
parse/process messages

Content spooling
Compression
Caching
Hosting shared services
QoS

Increases capacity of
servers, reducing costs
and increasing
operational efficiency
Mitigates risk of attack
Prioritizes messages to
ensure SLA compliance

Scalability XML parsing is compute intensive and
requires horizontally scalable
infrastructure
XML appliances that offload XML
specific duties do not support
persistence, failover, or advanced load
balancing capabilities

ADCs support
persistence, advanced
load balancing capabilities
and failover scenarios

Maintains availability of
services
Increases performance
Protects investments in
technology by ensuring
horizontal scalability
Supports necessary
capabilities lacking in
other solutions

Security Exploitation of vulnerabilities in
application infrastructure
Theft of sensitive data

Application firewall
capabilities
Content scrubbing
Data validation

Prevents attacks from
reaching application
infrastructure
Improves performance of
application infrastructure
by reducing duplication
of code

WHITE PAPER

SOA: Challenges and Solutions
®

3

WHITE PAPER

SOA: Challenges and Solutions
®

https://f5.com/Portals/1/Images/whitepaper-images/SOA Challenges and Solutions/fig-1.png


•

•

•
•

•

•

•

•

•
•

•
•
•
•
•

•

•
•

•

•

• •

•
•

•

•

•

•

•
•

•

•

Overview
The benefits of SOA (Service-Oriented Architecture) have been well documented,

but the challenges associated with an enterprise wide SOA deployment have not.

While the distributed nature of a SOA encourages reuse and provides a high level of

agility for the business, it can also give rise to real challenges in the delivery of SOA-

based applications.

XML is the core technology enabler of SOA-based applications. Its verbose nature,

inherent lack of security, and the increase in connections between applications and

services required result in a number of challenges that are well-understood, and that

have proven solutions.

Challenge
The challenge in delivering SOA-based applications lies in identifying where potential

problems will arise and addressing them as early in the deployment cycle as

possible. Application delivery controllers are well suited to addressing both the well-

understood and unanticipated issues associated with delivering SOA-based

applications. Incorporating an application delivery controller (ADC) into the

deployment plans for your SOA can prevent unnecessary delays and even the need

to re-architect portions of your SOA infrastructure—saving man hours, expense,

and headaches.

Solution
SOA is both an architectural design pattern and a deployment methodology. That's

a nice way of saying that no one can define what any particular SOA implementation

should look like. While there have been attempts by various vendors in a number of

vertical SOA markets to create best practices for SOA environments, these have

largely failed due to the rather dynamic and organizational-specific nature of SOA

implementations. Because the services that comprise an SOA are business-focused

and encapsulate business specific entities, there is no single agreed upon definition

of what must exist and how components are deployed in order to bear the title SOA.

There are, however, a set of guiding principles underlying SOA that can be

considered a framework around which discussions on common SOA attributes and

challenges can be based. The distributed nature of services, for example, is a

fundamental attribute of all SOA implementations and as such challenges

associated with that deployment model can be applied to all SOA environments,

regardless of their actual design or implementation.

1. An SOA is comprised of distributed business services and achieves business

value through the reuse of those services.

2. An SOA is based upon industry accepted open standards.

3. An SOA reduces time to market through loose coupling of service interfaces

and its underlying implementation, enabling agility.

4. An SOA is heterogeneous and applications comprise n-tiers that may vary

widely based on the business process activity around which its composite

services are built.

These common attributes result in a common set of challenges that all

organizations face and that must be addressed at some point in the implementation

process. SOA guiding principles suggest that consideration be given to the

architecture of the deployment environment and infrastructure upon which services

will be deployed and delivered before said services are put into production, in parallel

with service definition and development efforts.

Fortunately, most of the challenges associated with deploying SOA are common to

all web-based application deployments. The difference between SOA-based

applications and traditional applications is that these challenges are often faced by

implementers earlier in the application lifecycle due to the challenges associated with

its core technology enabler, XML.

SOA Basics
In most cases, a SOA will be implemented using a variety of standards, the most

common being HTTP, WSDL (Web Services Definition Language), SOAP (Simple

Object Access Protocol), and XML (eXtensible Markup Language).These latter three

standards work together to deliver messages between services much in the same

way as the post office.

WSDL  →   Entry in an address book 
HTTP  →   Postal carrier (transportation)  
SOAP  →   Envelope (encapsulation)  
XML   →   Letter (message) 

If you're sending a letter then it is assumed you already know where to send it. In a

SOA that information comes from the WSDL, which lists the transportation options

(HTTP, FTP, SMTP) available, the possible addressees (remote functions available),

and the format requirements for data sent to each addressee (XML).

The same way an envelope has an address, SOAP carries with it information about

where the message should be delivered and who should open it. In the case of

SOAP and SOA, the addressee is not a who, but a what, as the addressee is really

the name of a remote function that should process the message inside. Just like a

"real" envelope, SOAP has specific formatting requirements and failure to properly

place information in the right place can cause delivery or processing issues.

With this information you can build a message based on the format requirements

(XML-based), put it in an envelope address to the receiver (SOAP), and then drop it

in the mailbox (HTTP) and wait for a response.

If you are the receiver of this message, the message must be delivered to you, you

have to read (parse) the envelope and determine the correct addressee (remote

function). The message then must be passed to the appropriate addressee (remote

function) for processing. Once the correct addressee has the letter, they can then

read (parse) the message and process it according to their designated function.

You'll note that this process requires a lot of reading (parsing) and formatting of

data, from the actual data you want to transfer to the envelope to the transport layer.

It also has the effect of adding two "layers" to the stack that must be processed.

This is one of the challenges associated with SOA—the computational overhead

associated with parsing and processing XML. Current analysis of the impact of XML

parsing and processing on server utilization estimates that approximately 30% of a

server's resources are consumed simply by the parsing and processing of XML. As

a reference point, SSL processing was also estimated to consume 30% of a server's

resources. Unlike SSL, XML currently has no effective server-based solution to

alleviate this burden such as hardware assisted processing, thus the issue of

increasing performance of XML-based services and applications must necessarily lie

outside the server and in the network.

Obviously a single SOAP message does not an SOA make. An SOA can be thought

of as a distributed organization that makes use of the postal service (network) to

deliver messages that assign tasks (remote functions) to individual business units

(services).

There is also nothing that disallows services from being built upon other

technologies. REST (Representational State Transfer) is often used as an example of

an alternative technology upon which an SOA can be built. REST services do not

use SOAP, choosing instead to use the HTTP URI to specify the addressee of the

message and putting the message right into the HTTP body. If SOAP is analogous

to a letter, then REST messages are most like a postcard where the message is not

encapsulated at all.

An SOA can mix and match both technologies, as well as others, though the few

existing best practices documents and SOA consultants are quick to nudge—and

even push—organizations toward standardizing upon one or the other. As many of

the benefits of an SOA including interoperability and platform independence rely on

an open-standards foundation, this push is not necessarily a bad one.

Connection Management
Architecting the distributed services upon which an SOA is built involves the

identification of common business entities and their related functions that can be

encapsulated in a service. A company's inventory, for example, is a common

business entity that is likely shared across all business units. Querying and updating

that inventory are two common functions performed by applications upon the

inventory. Similarly, a customer entity likely exists that is common to all applications

within an organization, with a common set of functions that can be performed on

that customer such as querying, updating, or creating.

In the past these common functions and entities were often duplicated across all

applications needing to apply application-specific logic to them. This necessarily

meant that any changes to those entities resulted in the need to modify every

application which used those entities. This is an inefficient model which leaves open

the very real possibility that differences between applications will occur in the

handling of these entities. These differences are replicated into the data stores,

causing problems between disparate applications needing access to that data to

perform specific tasks. The duplication of function across multiple applications also

has a deleterious effect on the ability of an organization to affect rapid change due to

the time and effort involved in deploying a change to any shared entity.

SOA resolves these issues by removing common entities and their associated

functions and establishing them as an atomic entity of their own (a service) that is

shared by all applications. Changes to the logic or data structure associated with

that entity are now reduced to a single code-set, and assures consistency across

the enterprise.

Traditional Application Design

SOA Application Design

While an SOA certainly improves consistency of application logic and reduces the

time required to introduce a change to business entities or their underlying data

structure, you will note that it has introduced complexity in terms of the number of

connections required.

This increase in connections required can have a negative impact on performance if

services are physically distributed across the network. The overhead associated with

TCP connection management is applied directly to the computational cost of the

application, usually to the detriment the application's overall performance. Also note

that each intermediary (i.e., device or application that touches an XML message)

incurs both TCP session and XML parsing performance penalties. As the number of

services associated with a single application increase, so also does the total

application response time increase.

There are essentially two ways in which ADCs can address this challenge. The first

is based on accepted and proven connection management technologies. By

allowing an ADC to manage the myriad interconnects between services, it can

offload the burden of managing TCP sessions on servers and increase their overall

capacity.

Connection management technology reduces the burden of TCP on servers

The second way in which ADCs address the challenges of distributed services is by

providing a network platform on which shared network services can be hosted.

Many of these functions—security, data scrubbing and transformation,

authentication, and caching are application specific, and therefore network-focused

point solutions can't host these shared services. They can only be supported by an

ADC or on an application platform such as those offered by BEA, IBM, Oracle, and

Microsoft.

By moving applicable network-focused shared services to an ADC, it reduces the

complexity of the SOA by consolidating services into a single network-hosted

platform without sacrificing performance. Hosting shared network services on an

ADC also has the added benefit of alleviating unnecessary parsing of XML from the

services in your SOA. By validating the credentials of an incoming message before it

reaches the service, the service only parses those messages which are authorized

to invoke its operations. This principle applies equally as well to XML and web-

application threat defense measures. Rather than impede performance by

duplicating scans for common threats such as SQL injection, overly large message

sizes, cookie tampering, and XML-specific attacks, it makes sense to provide a

single, shared service through which the message is initially validated and verified as

being free of malicious content.

By verifying the message at the point of ingress, it alleviates the need for each

service to perform that same verification and thus reduces the processing burden

on their respective servers and increasing overall capacity.

Scalability
The high computational cost of parsing and processing XML reduces the overall

capacity of already burdened application servers. The issue with XML arises from its

text-based formatting, which must be parsed and converted into objects that the

application server can understand and manipulate. This process is called

marshalling, and the performance of this process is heavily dependent upon the

complexity of the data. Each element in the data must be created and many

functions called to assign values to its attributes. In most environments this process

is accomplished via serialization, which is treated as a form of I/O within the system.

I/O in general is resource-intensive, requiring a lot of memory and CPU cycles on the

server regardless of platform.

This process occurs twice; once when the message is received to transform the

XML into a machine readable format, and again when the response is transformed

back into XML to be returned.

Because of the drain on resources caused by this process, and any additional

processing required such as connections and queries to databases, application

servers on which services are deployed are rapidly driven to high CPU utilization

states and a dwindling pool of available memory. This reduces the capability of the

application server to process requests in a timely fashion and introduces delay as

the system tries to judiciously process each request by sharing its resources

amongst them.

The effect of heavy load upon application servers is a well-understood problem, with

existing solutions such as ADCs assisting in the horizontal scaling of these servers

to distribute requests. Scaling application servers in an SOA environment becomes

important earlier in the deployment process because of the additional burden placed

on application servers by the parsing and processing of XML.

It is not only the application servers in an SOA environment that are in need of

scalability services. Many organizations have turned to XML gateway appliances

such as those from Reactivity and IBM DataPower to offload the compute heavy

XML processing and to provide additional XML-specific functionality such as WS-

Security, schema validation, virtualization of services, and transformation via XSLT

(eXtensible Stylesheet Language Transformation). These devices are capable of

performing these functions on XML-based messages much more efficiently than an

application server, but lack many of the enterprise-class features required of a

network device such as advanced load balancing algorithms, proven failover

methods, and session management.

In order to scale these devices an ADC is still a necessity. Care should be taken

when considering when the issue of load balancing and XML appliances arises.

While these devices are capable of load balancing services, their implementations

are rudimentary and inflexible in their deployment options. These devices do not

provide the advanced health-checking capabilities of ADCs, and can therefore fail to

properly route traffic as they have no awareness of the state of the application as is

the case with an ADC.

The traditional round-robin or least-connection algorithms used by both XML

appliances and application server clustering capabilities fail to recognize the

resource intensive nature of XML and are therefore incapable of truly distributing

requests within a pool or cluster of servers in the most efficient manner. The

capability of an application server to handle the load of SOA messages is dependent

not only on the number of requests it is currently attempting to handle, but on the

resources currently available. This means that advanced algorithms and capabilities

are required to determine the current state of the application and the server, which is

one of the domains of expertise of ADCs. A server may have only one connection or

be "next" in line to receive a request, but if it is currently parsing and processing a

very large XML message it may not have the memory or CPU cycles to process

another message and still meet SLA goals for both messages.

Security
XML is text-based and therefore human-readable. It is also web-based and hosted

on the same application infrastructure as "traditional" web-based applications,

making it subject to traditional web attacks.

Many of the same vulnerabilities that have plagued web-based applications are

applicable to XML-based applications. SQL injection is a common method of

attempting to extract unauthorized information from corporate databases or to

wreak general havoc by deleting important data. SQL injection can be as easily

accomplished through an XML message as it is a traditional HTTP GET or POST

formatted message.

Because this type of attack is well-understood by existing solutions designed to

protect web-applications, these same solutions provide a measure of security for

XML-based applications. So, too, can other security techniques such as signature

scanning mechanisms that seek to discover hidden viruses within web-borne

messages.

While it is always preferred that developers produce secure code, the reality is that if

they responded in code to every threat that they would spend most of their time

coding protection against new attacks, testing those solutions and then deploying

them, only to start again the next day. Additionally, such security-in-code

techniques require duplication of code throughout an application, which can

negatively impact performance and increases the possibility of other errors being

introduced into the code. The duplication of code is an anathema to the guiding

principles of SOA, which seeks to reduce the costs and time to market for software

solutions through the identification of such shared services.

By employing an application firewall to mitigate the risks associated with SOA and

distributed service environments, the principles of an SOA are upheld while

protecting applications from these types of well-understood threats. Moving as

much application security to the point of ingress has the added benefit of improving

performance, as messages that are clearly malicious never reach the application

server, thus reducing the burden on application infrastructure.

Bandwidth
A concern of many regarding XML is the increased size of messages flowing

between systems. Indeed, the SOAP envelope used by web services to carry the

XML messages itself adds a minimum of 256 bytes to every message, though

usually the increase is much higher.

The verbose nature of XML means that even the smallest of messages will become

approximately twice as large as the same message formatting as HTTP POST/GET

name-value pairs. When these messages are being transferred between servers in

the data center this increase oft has a negligible effect on bandwidth and transfer

times, owing to the fat nature of data center backbones. But with increased use of

Asynchronous JavaScript and XML (AJAX) as the basis for user-interfaces that

interact with SOA-based back end systems, it is important to consider the effect of

these increasingly large messages on delivery times to the client.

In addition to the potential use of AJAX clients to access SOA services, there is the

very real possibility that external partners and customers may be accessing services

via the public Internet, over an uncontrollable and often unpredictable public

network. In any case in which clients are accessing services via a public network

there is the possibility that a disparity exists between the client's ability to receive

responses as quickly as the server can send them. This has the effect of forcing

servers to segment data into small chunks that the client can easily consume, but

increases the total time required to deliver the content.

This ties up the application and web server, reducing the total number of clients it

can serve at any given time. Application delivery controllers address this issue by

employing a technique often called "content spooling." Content spooling allows an

ADC to mediate between the client and server and allows the server to send content

as fast as possible to the mediating device. The ADC then takes on the

responsibility of spoon-feeding that content to the client, allowing the application or

web server to handle more requests.

Another challenge arising from the use of XML to transport data is, however, that

messages are all too often exceedingly fat. Message sizes in the 100's of kilobytes

are not uncommon, with messages reaching into the gigabytes in size less

common, but not unheard of.

As with the challenges related to the size of HTML and other text-based message

formats, the issues associated with the size of messages are easily addressed by

the right solution. A number of acceleration technologies exist today that are

capable of employing a number of compression techniques to reduce the overall

size of messages, thereby decreasing the time to transfer between server and client.

Industry standard compression technologies, stripping of white space, and other

data reduction technologies exist solely to respond to this challenge and reduce the

impact of large messages on the application infrastructure and delivery network.

Application acceleration-specific products as well as many of the features

associated with ADCs can provide many of these capabilities, as well as advanced

mechanisms for assisting with issues only found in browser-based applications

such as artificially imposed connection limitations that inhibit AJAX and browser-

based XML technologies from performing at full capacity. Dynamic content caching

is as applicable to XML as it is to HTML and related text-based formats, and can

increase the performance and capacity of SOA-based deployments dramatically.

WAN optimization controllers, as well, can provide additional improvements in

remote-office scenarios by taking advantage of symmetric data reduction

capabilities.

Conclusion
Many of the challenges associated with SOA deployments are the same challenges

we've encountered when deploying traditional web-based applications. The

underlying causes of these challenges may differ in a SOA, but the solutions to

address those challenges remain the same. The key to addressing SOA-related

challenges is to identify them as early as possible and include the appropriate

solution in the architecture to reduce the possibility of re-architecture being required

in a post-deployment environment.

Chal lenge Impact ADC Solut ion Benefit

Exponential
increase in
connections

Overhead of TCP connection
management adds to burden on servers
Additional hops add additional latency

Connection management
Hosting shared services

Reduces number of
servers required,
lowering costs
Reduces complexity and
time to manage
Maintains availability and
increases performance
Reduces requirement for
duplication of
functionality in deployed
services

XML
Message
size

More bandwidth consumed
More resources consumed to
parse/process messages

Content spooling
Compression
Caching
Hosting shared services
QoS

Increases capacity of
servers, reducing costs
and increasing
operational efficiency
Mitigates risk of attack
Prioritizes messages to
ensure SLA compliance

Scalability XML parsing is compute intensive and
requires horizontally scalable
infrastructure
XML appliances that offload XML
specific duties do not support
persistence, failover, or advanced load
balancing capabilities

ADCs support
persistence, advanced
load balancing capabilities
and failover scenarios

Maintains availability of
services
Increases performance
Protects investments in
technology by ensuring
horizontal scalability
Supports necessary
capabilities lacking in
other solutions

Security Exploitation of vulnerabilities in
application infrastructure
Theft of sensitive data

Application firewall
capabilities
Content scrubbing
Data validation

Prevents attacks from
reaching application
infrastructure
Improves performance of
application infrastructure
by reducing duplication
of code

WHITE PAPER

SOA: Challenges and Solutions
®

4

WHITE PAPER

SOA: Challenges and Solutions
®



•

•

•
•

•

•

•

•

•
•

•
•
•
•
•

•

•
•

•

•

• •

•
•

•

•

•

•

•
•

•

•

Overview
The benefits of SOA (Service-Oriented Architecture) have been well documented,

but the challenges associated with an enterprise wide SOA deployment have not.

While the distributed nature of a SOA encourages reuse and provides a high level of

agility for the business, it can also give rise to real challenges in the delivery of SOA-

based applications.

XML is the core technology enabler of SOA-based applications. Its verbose nature,

inherent lack of security, and the increase in connections between applications and

services required result in a number of challenges that are well-understood, and that

have proven solutions.

Challenge
The challenge in delivering SOA-based applications lies in identifying where potential

problems will arise and addressing them as early in the deployment cycle as

possible. Application delivery controllers are well suited to addressing both the well-

understood and unanticipated issues associated with delivering SOA-based

applications. Incorporating an application delivery controller (ADC) into the

deployment plans for your SOA can prevent unnecessary delays and even the need

to re-architect portions of your SOA infrastructure—saving man hours, expense,

and headaches.

Solution
SOA is both an architectural design pattern and a deployment methodology. That's

a nice way of saying that no one can define what any particular SOA implementation

should look like. While there have been attempts by various vendors in a number of

vertical SOA markets to create best practices for SOA environments, these have

largely failed due to the rather dynamic and organizational-specific nature of SOA

implementations. Because the services that comprise an SOA are business-focused

and encapsulate business specific entities, there is no single agreed upon definition

of what must exist and how components are deployed in order to bear the title SOA.

There are, however, a set of guiding principles underlying SOA that can be

considered a framework around which discussions on common SOA attributes and

challenges can be based. The distributed nature of services, for example, is a

fundamental attribute of all SOA implementations and as such challenges

associated with that deployment model can be applied to all SOA environments,

regardless of their actual design or implementation.

1. An SOA is comprised of distributed business services and achieves business

value through the reuse of those services.

2. An SOA is based upon industry accepted open standards.

3. An SOA reduces time to market through loose coupling of service interfaces

and its underlying implementation, enabling agility.

4. An SOA is heterogeneous and applications comprise n-tiers that may vary

widely based on the business process activity around which its composite

services are built.

These common attributes result in a common set of challenges that all

organizations face and that must be addressed at some point in the implementation

process. SOA guiding principles suggest that consideration be given to the

architecture of the deployment environment and infrastructure upon which services

will be deployed and delivered before said services are put into production, in parallel

with service definition and development efforts.

Fortunately, most of the challenges associated with deploying SOA are common to

all web-based application deployments. The difference between SOA-based

applications and traditional applications is that these challenges are often faced by

implementers earlier in the application lifecycle due to the challenges associated with

its core technology enabler, XML.

SOA Basics
In most cases, a SOA will be implemented using a variety of standards, the most

common being HTTP, WSDL (Web Services Definition Language), SOAP (Simple

Object Access Protocol), and XML (eXtensible Markup Language).These latter three

standards work together to deliver messages between services much in the same

way as the post office.

WSDL  →   Entry in an address book 
HTTP  →   Postal carrier (transportation)  
SOAP  →   Envelope (encapsulation)  
XML   →   Letter (message) 

If you're sending a letter then it is assumed you already know where to send it. In a

SOA that information comes from the WSDL, which lists the transportation options

(HTTP, FTP, SMTP) available, the possible addressees (remote functions available),

and the format requirements for data sent to each addressee (XML).

The same way an envelope has an address, SOAP carries with it information about

where the message should be delivered and who should open it. In the case of

SOAP and SOA, the addressee is not a who, but a what, as the addressee is really

the name of a remote function that should process the message inside. Just like a

"real" envelope, SOAP has specific formatting requirements and failure to properly

place information in the right place can cause delivery or processing issues.

With this information you can build a message based on the format requirements

(XML-based), put it in an envelope address to the receiver (SOAP), and then drop it

in the mailbox (HTTP) and wait for a response.

If you are the receiver of this message, the message must be delivered to you, you

have to read (parse) the envelope and determine the correct addressee (remote

function). The message then must be passed to the appropriate addressee (remote

function) for processing. Once the correct addressee has the letter, they can then

read (parse) the message and process it according to their designated function.

You'll note that this process requires a lot of reading (parsing) and formatting of

data, from the actual data you want to transfer to the envelope to the transport layer.

It also has the effect of adding two "layers" to the stack that must be processed.

This is one of the challenges associated with SOA—the computational overhead

associated with parsing and processing XML. Current analysis of the impact of XML

parsing and processing on server utilization estimates that approximately 30% of a

server's resources are consumed simply by the parsing and processing of XML. As

a reference point, SSL processing was also estimated to consume 30% of a server's

resources. Unlike SSL, XML currently has no effective server-based solution to

alleviate this burden such as hardware assisted processing, thus the issue of

increasing performance of XML-based services and applications must necessarily lie

outside the server and in the network.

Obviously a single SOAP message does not an SOA make. An SOA can be thought

of as a distributed organization that makes use of the postal service (network) to

deliver messages that assign tasks (remote functions) to individual business units

(services).

There is also nothing that disallows services from being built upon other

technologies. REST (Representational State Transfer) is often used as an example of

an alternative technology upon which an SOA can be built. REST services do not

use SOAP, choosing instead to use the HTTP URI to specify the addressee of the

message and putting the message right into the HTTP body. If SOAP is analogous

to a letter, then REST messages are most like a postcard where the message is not

encapsulated at all.

An SOA can mix and match both technologies, as well as others, though the few

existing best practices documents and SOA consultants are quick to nudge—and

even push—organizations toward standardizing upon one or the other. As many of

the benefits of an SOA including interoperability and platform independence rely on

an open-standards foundation, this push is not necessarily a bad one.

Connection Management
Architecting the distributed services upon which an SOA is built involves the

identification of common business entities and their related functions that can be

encapsulated in a service. A company's inventory, for example, is a common

business entity that is likely shared across all business units. Querying and updating

that inventory are two common functions performed by applications upon the

inventory. Similarly, a customer entity likely exists that is common to all applications

within an organization, with a common set of functions that can be performed on

that customer such as querying, updating, or creating.

In the past these common functions and entities were often duplicated across all

applications needing to apply application-specific logic to them. This necessarily

meant that any changes to those entities resulted in the need to modify every

application which used those entities. This is an inefficient model which leaves open

the very real possibility that differences between applications will occur in the

handling of these entities. These differences are replicated into the data stores,

causing problems between disparate applications needing access to that data to

perform specific tasks. The duplication of function across multiple applications also

has a deleterious effect on the ability of an organization to affect rapid change due to

the time and effort involved in deploying a change to any shared entity.

SOA resolves these issues by removing common entities and their associated

functions and establishing them as an atomic entity of their own (a service) that is

shared by all applications. Changes to the logic or data structure associated with

that entity are now reduced to a single code-set, and assures consistency across

the enterprise.

Traditional Application Design

SOA Application Design

While an SOA certainly improves consistency of application logic and reduces the

time required to introduce a change to business entities or their underlying data

structure, you will note that it has introduced complexity in terms of the number of

connections required.

This increase in connections required can have a negative impact on performance if

services are physically distributed across the network. The overhead associated with

TCP connection management is applied directly to the computational cost of the

application, usually to the detriment the application's overall performance. Also note

that each intermediary (i.e., device or application that touches an XML message)

incurs both TCP session and XML parsing performance penalties. As the number of

services associated with a single application increase, so also does the total

application response time increase.

There are essentially two ways in which ADCs can address this challenge. The first

is based on accepted and proven connection management technologies. By

allowing an ADC to manage the myriad interconnects between services, it can

offload the burden of managing TCP sessions on servers and increase their overall

capacity.

Connection management technology reduces the burden of TCP on servers

The second way in which ADCs address the challenges of distributed services is by

providing a network platform on which shared network services can be hosted.

Many of these functions—security, data scrubbing and transformation,

authentication, and caching are application specific, and therefore network-focused

point solutions can't host these shared services. They can only be supported by an

ADC or on an application platform such as those offered by BEA, IBM, Oracle, and

Microsoft.

By moving applicable network-focused shared services to an ADC, it reduces the

complexity of the SOA by consolidating services into a single network-hosted

platform without sacrificing performance. Hosting shared network services on an

ADC also has the added benefit of alleviating unnecessary parsing of XML from the

services in your SOA. By validating the credentials of an incoming message before it

reaches the service, the service only parses those messages which are authorized

to invoke its operations. This principle applies equally as well to XML and web-

application threat defense measures. Rather than impede performance by

duplicating scans for common threats such as SQL injection, overly large message

sizes, cookie tampering, and XML-specific attacks, it makes sense to provide a

single, shared service through which the message is initially validated and verified as

being free of malicious content.

By verifying the message at the point of ingress, it alleviates the need for each

service to perform that same verification and thus reduces the processing burden

on their respective servers and increasing overall capacity.

Scalability
The high computational cost of parsing and processing XML reduces the overall

capacity of already burdened application servers. The issue with XML arises from its

text-based formatting, which must be parsed and converted into objects that the

application server can understand and manipulate. This process is called

marshalling, and the performance of this process is heavily dependent upon the

complexity of the data. Each element in the data must be created and many

functions called to assign values to its attributes. In most environments this process

is accomplished via serialization, which is treated as a form of I/O within the system.

I/O in general is resource-intensive, requiring a lot of memory and CPU cycles on the

server regardless of platform.

This process occurs twice; once when the message is received to transform the

XML into a machine readable format, and again when the response is transformed

back into XML to be returned.

Because of the drain on resources caused by this process, and any additional

processing required such as connections and queries to databases, application

servers on which services are deployed are rapidly driven to high CPU utilization

states and a dwindling pool of available memory. This reduces the capability of the

application server to process requests in a timely fashion and introduces delay as

the system tries to judiciously process each request by sharing its resources

amongst them.

The effect of heavy load upon application servers is a well-understood problem, with

existing solutions such as ADCs assisting in the horizontal scaling of these servers

to distribute requests. Scaling application servers in an SOA environment becomes

important earlier in the deployment process because of the additional burden placed

on application servers by the parsing and processing of XML.

It is not only the application servers in an SOA environment that are in need of

scalability services. Many organizations have turned to XML gateway appliances

such as those from Reactivity and IBM DataPower to offload the compute heavy

XML processing and to provide additional XML-specific functionality such as WS-

Security, schema validation, virtualization of services, and transformation via XSLT

(eXtensible Stylesheet Language Transformation). These devices are capable of

performing these functions on XML-based messages much more efficiently than an

application server, but lack many of the enterprise-class features required of a

network device such as advanced load balancing algorithms, proven failover

methods, and session management.

In order to scale these devices an ADC is still a necessity. Care should be taken

when considering when the issue of load balancing and XML appliances arises.

While these devices are capable of load balancing services, their implementations

are rudimentary and inflexible in their deployment options. These devices do not

provide the advanced health-checking capabilities of ADCs, and can therefore fail to

properly route traffic as they have no awareness of the state of the application as is

the case with an ADC.

The traditional round-robin or least-connection algorithms used by both XML

appliances and application server clustering capabilities fail to recognize the

resource intensive nature of XML and are therefore incapable of truly distributing

requests within a pool or cluster of servers in the most efficient manner. The

capability of an application server to handle the load of SOA messages is dependent

not only on the number of requests it is currently attempting to handle, but on the

resources currently available. This means that advanced algorithms and capabilities

are required to determine the current state of the application and the server, which is

one of the domains of expertise of ADCs. A server may have only one connection or

be "next" in line to receive a request, but if it is currently parsing and processing a

very large XML message it may not have the memory or CPU cycles to process

another message and still meet SLA goals for both messages.

Security
XML is text-based and therefore human-readable. It is also web-based and hosted

on the same application infrastructure as "traditional" web-based applications,

making it subject to traditional web attacks.

Many of the same vulnerabilities that have plagued web-based applications are

applicable to XML-based applications. SQL injection is a common method of

attempting to extract unauthorized information from corporate databases or to

wreak general havoc by deleting important data. SQL injection can be as easily

accomplished through an XML message as it is a traditional HTTP GET or POST

formatted message.

Because this type of attack is well-understood by existing solutions designed to

protect web-applications, these same solutions provide a measure of security for

XML-based applications. So, too, can other security techniques such as signature

scanning mechanisms that seek to discover hidden viruses within web-borne

messages.

While it is always preferred that developers produce secure code, the reality is that if

they responded in code to every threat that they would spend most of their time

coding protection against new attacks, testing those solutions and then deploying

them, only to start again the next day. Additionally, such security-in-code

techniques require duplication of code throughout an application, which can

negatively impact performance and increases the possibility of other errors being

introduced into the code. The duplication of code is an anathema to the guiding

principles of SOA, which seeks to reduce the costs and time to market for software

solutions through the identification of such shared services.

By employing an application firewall to mitigate the risks associated with SOA and

distributed service environments, the principles of an SOA are upheld while

protecting applications from these types of well-understood threats. Moving as

much application security to the point of ingress has the added benefit of improving

performance, as messages that are clearly malicious never reach the application

server, thus reducing the burden on application infrastructure.

Bandwidth
A concern of many regarding XML is the increased size of messages flowing

between systems. Indeed, the SOAP envelope used by web services to carry the

XML messages itself adds a minimum of 256 bytes to every message, though

usually the increase is much higher.

The verbose nature of XML means that even the smallest of messages will become

approximately twice as large as the same message formatting as HTTP POST/GET

name-value pairs. When these messages are being transferred between servers in

the data center this increase oft has a negligible effect on bandwidth and transfer

times, owing to the fat nature of data center backbones. But with increased use of

Asynchronous JavaScript and XML (AJAX) as the basis for user-interfaces that

interact with SOA-based back end systems, it is important to consider the effect of

these increasingly large messages on delivery times to the client.

In addition to the potential use of AJAX clients to access SOA services, there is the

very real possibility that external partners and customers may be accessing services

via the public Internet, over an uncontrollable and often unpredictable public

network. In any case in which clients are accessing services via a public network

there is the possibility that a disparity exists between the client's ability to receive

responses as quickly as the server can send them. This has the effect of forcing

servers to segment data into small chunks that the client can easily consume, but

increases the total time required to deliver the content.

This ties up the application and web server, reducing the total number of clients it

can serve at any given time. Application delivery controllers address this issue by

employing a technique often called "content spooling." Content spooling allows an

ADC to mediate between the client and server and allows the server to send content

as fast as possible to the mediating device. The ADC then takes on the

responsibility of spoon-feeding that content to the client, allowing the application or

web server to handle more requests.

Another challenge arising from the use of XML to transport data is, however, that

messages are all too often exceedingly fat. Message sizes in the 100's of kilobytes

are not uncommon, with messages reaching into the gigabytes in size less

common, but not unheard of.

As with the challenges related to the size of HTML and other text-based message

formats, the issues associated with the size of messages are easily addressed by

the right solution. A number of acceleration technologies exist today that are

capable of employing a number of compression techniques to reduce the overall

size of messages, thereby decreasing the time to transfer between server and client.

Industry standard compression technologies, stripping of white space, and other

data reduction technologies exist solely to respond to this challenge and reduce the

impact of large messages on the application infrastructure and delivery network.

Application acceleration-specific products as well as many of the features

associated with ADCs can provide many of these capabilities, as well as advanced

mechanisms for assisting with issues only found in browser-based applications

such as artificially imposed connection limitations that inhibit AJAX and browser-

based XML technologies from performing at full capacity. Dynamic content caching

is as applicable to XML as it is to HTML and related text-based formats, and can

increase the performance and capacity of SOA-based deployments dramatically.

WAN optimization controllers, as well, can provide additional improvements in

remote-office scenarios by taking advantage of symmetric data reduction

capabilities.

Conclusion
Many of the challenges associated with SOA deployments are the same challenges

we've encountered when deploying traditional web-based applications. The

underlying causes of these challenges may differ in a SOA, but the solutions to

address those challenges remain the same. The key to addressing SOA-related

challenges is to identify them as early as possible and include the appropriate

solution in the architecture to reduce the possibility of re-architecture being required

in a post-deployment environment.

Chal lenge Impact ADC Solut ion Benefit

Exponential
increase in
connections

Overhead of TCP connection
management adds to burden on servers
Additional hops add additional latency

Connection management
Hosting shared services

Reduces number of
servers required,
lowering costs
Reduces complexity and
time to manage
Maintains availability and
increases performance
Reduces requirement for
duplication of
functionality in deployed
services

XML
Message
size

More bandwidth consumed
More resources consumed to
parse/process messages

Content spooling
Compression
Caching
Hosting shared services
QoS

Increases capacity of
servers, reducing costs
and increasing
operational efficiency
Mitigates risk of attack
Prioritizes messages to
ensure SLA compliance

Scalability XML parsing is compute intensive and
requires horizontally scalable
infrastructure
XML appliances that offload XML
specific duties do not support
persistence, failover, or advanced load
balancing capabilities

ADCs support
persistence, advanced
load balancing capabilities
and failover scenarios

Maintains availability of
services
Increases performance
Protects investments in
technology by ensuring
horizontal scalability
Supports necessary
capabilities lacking in
other solutions

Security Exploitation of vulnerabilities in
application infrastructure
Theft of sensitive data

Application firewall
capabilities
Content scrubbing
Data validation

Prevents attacks from
reaching application
infrastructure
Improves performance of
application infrastructure
by reducing duplication
of code

WHITE PAPER

SOA: Challenges and Solutions
®

5

WHITE PAPER

SOA: Challenges and Solutions
®



•

•

•
•

•

•

•

•

•
•

•
•
•
•
•

•

•
•

•

•

• •

•
•

•

•

•

•

•
•

•

•

Overview
The benefits of SOA (Service-Oriented Architecture) have been well documented,

but the challenges associated with an enterprise wide SOA deployment have not.

While the distributed nature of a SOA encourages reuse and provides a high level of

agility for the business, it can also give rise to real challenges in the delivery of SOA-

based applications.

XML is the core technology enabler of SOA-based applications. Its verbose nature,

inherent lack of security, and the increase in connections between applications and

services required result in a number of challenges that are well-understood, and that

have proven solutions.

Challenge
The challenge in delivering SOA-based applications lies in identifying where potential

problems will arise and addressing them as early in the deployment cycle as

possible. Application delivery controllers are well suited to addressing both the well-

understood and unanticipated issues associated with delivering SOA-based

applications. Incorporating an application delivery controller (ADC) into the

deployment plans for your SOA can prevent unnecessary delays and even the need

to re-architect portions of your SOA infrastructure—saving man hours, expense,

and headaches.

Solution
SOA is both an architectural design pattern and a deployment methodology. That's

a nice way of saying that no one can define what any particular SOA implementation

should look like. While there have been attempts by various vendors in a number of

vertical SOA markets to create best practices for SOA environments, these have

largely failed due to the rather dynamic and organizational-specific nature of SOA

implementations. Because the services that comprise an SOA are business-focused

and encapsulate business specific entities, there is no single agreed upon definition

of what must exist and how components are deployed in order to bear the title SOA.

There are, however, a set of guiding principles underlying SOA that can be

considered a framework around which discussions on common SOA attributes and

challenges can be based. The distributed nature of services, for example, is a

fundamental attribute of all SOA implementations and as such challenges

associated with that deployment model can be applied to all SOA environments,

regardless of their actual design or implementation.

1. An SOA is comprised of distributed business services and achieves business

value through the reuse of those services.

2. An SOA is based upon industry accepted open standards.

3. An SOA reduces time to market through loose coupling of service interfaces

and its underlying implementation, enabling agility.

4. An SOA is heterogeneous and applications comprise n-tiers that may vary

widely based on the business process activity around which its composite

services are built.

These common attributes result in a common set of challenges that all

organizations face and that must be addressed at some point in the implementation

process. SOA guiding principles suggest that consideration be given to the

architecture of the deployment environment and infrastructure upon which services

will be deployed and delivered before said services are put into production, in parallel

with service definition and development efforts.

Fortunately, most of the challenges associated with deploying SOA are common to

all web-based application deployments. The difference between SOA-based

applications and traditional applications is that these challenges are often faced by

implementers earlier in the application lifecycle due to the challenges associated with

its core technology enabler, XML.

SOA Basics
In most cases, a SOA will be implemented using a variety of standards, the most

common being HTTP, WSDL (Web Services Definition Language), SOAP (Simple

Object Access Protocol), and XML (eXtensible Markup Language).These latter three

standards work together to deliver messages between services much in the same

way as the post office.

WSDL  →   Entry in an address book 
HTTP  →   Postal carrier (transportation)  
SOAP  →   Envelope (encapsulation)  
XML   →   Letter (message) 

If you're sending a letter then it is assumed you already know where to send it. In a

SOA that information comes from the WSDL, which lists the transportation options

(HTTP, FTP, SMTP) available, the possible addressees (remote functions available),

and the format requirements for data sent to each addressee (XML).

The same way an envelope has an address, SOAP carries with it information about

where the message should be delivered and who should open it. In the case of

SOAP and SOA, the addressee is not a who, but a what, as the addressee is really

the name of a remote function that should process the message inside. Just like a

"real" envelope, SOAP has specific formatting requirements and failure to properly

place information in the right place can cause delivery or processing issues.

With this information you can build a message based on the format requirements

(XML-based), put it in an envelope address to the receiver (SOAP), and then drop it

in the mailbox (HTTP) and wait for a response.

If you are the receiver of this message, the message must be delivered to you, you

have to read (parse) the envelope and determine the correct addressee (remote

function). The message then must be passed to the appropriate addressee (remote

function) for processing. Once the correct addressee has the letter, they can then

read (parse) the message and process it according to their designated function.

You'll note that this process requires a lot of reading (parsing) and formatting of

data, from the actual data you want to transfer to the envelope to the transport layer.

It also has the effect of adding two "layers" to the stack that must be processed.

This is one of the challenges associated with SOA—the computational overhead

associated with parsing and processing XML. Current analysis of the impact of XML

parsing and processing on server utilization estimates that approximately 30% of a

server's resources are consumed simply by the parsing and processing of XML. As

a reference point, SSL processing was also estimated to consume 30% of a server's

resources. Unlike SSL, XML currently has no effective server-based solution to

alleviate this burden such as hardware assisted processing, thus the issue of

increasing performance of XML-based services and applications must necessarily lie

outside the server and in the network.

Obviously a single SOAP message does not an SOA make. An SOA can be thought

of as a distributed organization that makes use of the postal service (network) to

deliver messages that assign tasks (remote functions) to individual business units

(services).

There is also nothing that disallows services from being built upon other

technologies. REST (Representational State Transfer) is often used as an example of

an alternative technology upon which an SOA can be built. REST services do not

use SOAP, choosing instead to use the HTTP URI to specify the addressee of the

message and putting the message right into the HTTP body. If SOAP is analogous

to a letter, then REST messages are most like a postcard where the message is not

encapsulated at all.

An SOA can mix and match both technologies, as well as others, though the few

existing best practices documents and SOA consultants are quick to nudge—and

even push—organizations toward standardizing upon one or the other. As many of

the benefits of an SOA including interoperability and platform independence rely on

an open-standards foundation, this push is not necessarily a bad one.

Connection Management
Architecting the distributed services upon which an SOA is built involves the

identification of common business entities and their related functions that can be

encapsulated in a service. A company's inventory, for example, is a common

business entity that is likely shared across all business units. Querying and updating

that inventory are two common functions performed by applications upon the

inventory. Similarly, a customer entity likely exists that is common to all applications

within an organization, with a common set of functions that can be performed on

that customer such as querying, updating, or creating.

In the past these common functions and entities were often duplicated across all

applications needing to apply application-specific logic to them. This necessarily

meant that any changes to those entities resulted in the need to modify every

application which used those entities. This is an inefficient model which leaves open

the very real possibility that differences between applications will occur in the

handling of these entities. These differences are replicated into the data stores,

causing problems between disparate applications needing access to that data to

perform specific tasks. The duplication of function across multiple applications also

has a deleterious effect on the ability of an organization to affect rapid change due to

the time and effort involved in deploying a change to any shared entity.

SOA resolves these issues by removing common entities and their associated

functions and establishing them as an atomic entity of their own (a service) that is

shared by all applications. Changes to the logic or data structure associated with

that entity are now reduced to a single code-set, and assures consistency across

the enterprise.

Traditional Application Design

SOA Application Design

While an SOA certainly improves consistency of application logic and reduces the

time required to introduce a change to business entities or their underlying data

structure, you will note that it has introduced complexity in terms of the number of

connections required.

This increase in connections required can have a negative impact on performance if

services are physically distributed across the network. The overhead associated with

TCP connection management is applied directly to the computational cost of the

application, usually to the detriment the application's overall performance. Also note

that each intermediary (i.e., device or application that touches an XML message)

incurs both TCP session and XML parsing performance penalties. As the number of

services associated with a single application increase, so also does the total

application response time increase.

There are essentially two ways in which ADCs can address this challenge. The first

is based on accepted and proven connection management technologies. By

allowing an ADC to manage the myriad interconnects between services, it can

offload the burden of managing TCP sessions on servers and increase their overall

capacity.

Connection management technology reduces the burden of TCP on servers

The second way in which ADCs address the challenges of distributed services is by

providing a network platform on which shared network services can be hosted.

Many of these functions—security, data scrubbing and transformation,

authentication, and caching are application specific, and therefore network-focused

point solutions can't host these shared services. They can only be supported by an

ADC or on an application platform such as those offered by BEA, IBM, Oracle, and

Microsoft.

By moving applicable network-focused shared services to an ADC, it reduces the

complexity of the SOA by consolidating services into a single network-hosted

platform without sacrificing performance. Hosting shared network services on an

ADC also has the added benefit of alleviating unnecessary parsing of XML from the

services in your SOA. By validating the credentials of an incoming message before it

reaches the service, the service only parses those messages which are authorized

to invoke its operations. This principle applies equally as well to XML and web-

application threat defense measures. Rather than impede performance by

duplicating scans for common threats such as SQL injection, overly large message

sizes, cookie tampering, and XML-specific attacks, it makes sense to provide a

single, shared service through which the message is initially validated and verified as

being free of malicious content.

By verifying the message at the point of ingress, it alleviates the need for each

service to perform that same verification and thus reduces the processing burden

on their respective servers and increasing overall capacity.

Scalability
The high computational cost of parsing and processing XML reduces the overall

capacity of already burdened application servers. The issue with XML arises from its

text-based formatting, which must be parsed and converted into objects that the

application server can understand and manipulate. This process is called

marshalling, and the performance of this process is heavily dependent upon the

complexity of the data. Each element in the data must be created and many

functions called to assign values to its attributes. In most environments this process

is accomplished via serialization, which is treated as a form of I/O within the system.

I/O in general is resource-intensive, requiring a lot of memory and CPU cycles on the

server regardless of platform.

This process occurs twice; once when the message is received to transform the

XML into a machine readable format, and again when the response is transformed

back into XML to be returned.

Because of the drain on resources caused by this process, and any additional

processing required such as connections and queries to databases, application

servers on which services are deployed are rapidly driven to high CPU utilization

states and a dwindling pool of available memory. This reduces the capability of the

application server to process requests in a timely fashion and introduces delay as

the system tries to judiciously process each request by sharing its resources

amongst them.

The effect of heavy load upon application servers is a well-understood problem, with

existing solutions such as ADCs assisting in the horizontal scaling of these servers

to distribute requests. Scaling application servers in an SOA environment becomes

important earlier in the deployment process because of the additional burden placed

on application servers by the parsing and processing of XML.

It is not only the application servers in an SOA environment that are in need of

scalability services. Many organizations have turned to XML gateway appliances

such as those from Reactivity and IBM DataPower to offload the compute heavy

XML processing and to provide additional XML-specific functionality such as WS-

Security, schema validation, virtualization of services, and transformation via XSLT

(eXtensible Stylesheet Language Transformation). These devices are capable of

performing these functions on XML-based messages much more efficiently than an

application server, but lack many of the enterprise-class features required of a

network device such as advanced load balancing algorithms, proven failover

methods, and session management.

In order to scale these devices an ADC is still a necessity. Care should be taken

when considering when the issue of load balancing and XML appliances arises.

While these devices are capable of load balancing services, their implementations

are rudimentary and inflexible in their deployment options. These devices do not

provide the advanced health-checking capabilities of ADCs, and can therefore fail to

properly route traffic as they have no awareness of the state of the application as is

the case with an ADC.

The traditional round-robin or least-connection algorithms used by both XML

appliances and application server clustering capabilities fail to recognize the

resource intensive nature of XML and are therefore incapable of truly distributing

requests within a pool or cluster of servers in the most efficient manner. The

capability of an application server to handle the load of SOA messages is dependent

not only on the number of requests it is currently attempting to handle, but on the

resources currently available. This means that advanced algorithms and capabilities

are required to determine the current state of the application and the server, which is

one of the domains of expertise of ADCs. A server may have only one connection or

be "next" in line to receive a request, but if it is currently parsing and processing a

very large XML message it may not have the memory or CPU cycles to process

another message and still meet SLA goals for both messages.

Security
XML is text-based and therefore human-readable. It is also web-based and hosted

on the same application infrastructure as "traditional" web-based applications,

making it subject to traditional web attacks.

Many of the same vulnerabilities that have plagued web-based applications are

applicable to XML-based applications. SQL injection is a common method of

attempting to extract unauthorized information from corporate databases or to

wreak general havoc by deleting important data. SQL injection can be as easily

accomplished through an XML message as it is a traditional HTTP GET or POST

formatted message.

Because this type of attack is well-understood by existing solutions designed to

protect web-applications, these same solutions provide a measure of security for

XML-based applications. So, too, can other security techniques such as signature

scanning mechanisms that seek to discover hidden viruses within web-borne

messages.

While it is always preferred that developers produce secure code, the reality is that if

they responded in code to every threat that they would spend most of their time

coding protection against new attacks, testing those solutions and then deploying

them, only to start again the next day. Additionally, such security-in-code

techniques require duplication of code throughout an application, which can

negatively impact performance and increases the possibility of other errors being

introduced into the code. The duplication of code is an anathema to the guiding

principles of SOA, which seeks to reduce the costs and time to market for software

solutions through the identification of such shared services.

By employing an application firewall to mitigate the risks associated with SOA and

distributed service environments, the principles of an SOA are upheld while

protecting applications from these types of well-understood threats. Moving as

much application security to the point of ingress has the added benefit of improving

performance, as messages that are clearly malicious never reach the application

server, thus reducing the burden on application infrastructure.

Bandwidth
A concern of many regarding XML is the increased size of messages flowing

between systems. Indeed, the SOAP envelope used by web services to carry the

XML messages itself adds a minimum of 256 bytes to every message, though

usually the increase is much higher.

The verbose nature of XML means that even the smallest of messages will become

approximately twice as large as the same message formatting as HTTP POST/GET

name-value pairs. When these messages are being transferred between servers in

the data center this increase oft has a negligible effect on bandwidth and transfer

times, owing to the fat nature of data center backbones. But with increased use of

Asynchronous JavaScript and XML (AJAX) as the basis for user-interfaces that

interact with SOA-based back end systems, it is important to consider the effect of

these increasingly large messages on delivery times to the client.

In addition to the potential use of AJAX clients to access SOA services, there is the

very real possibility that external partners and customers may be accessing services

via the public Internet, over an uncontrollable and often unpredictable public

network. In any case in which clients are accessing services via a public network

there is the possibility that a disparity exists between the client's ability to receive

responses as quickly as the server can send them. This has the effect of forcing

servers to segment data into small chunks that the client can easily consume, but

increases the total time required to deliver the content.

This ties up the application and web server, reducing the total number of clients it

can serve at any given time. Application delivery controllers address this issue by

employing a technique often called "content spooling." Content spooling allows an

ADC to mediate between the client and server and allows the server to send content

as fast as possible to the mediating device. The ADC then takes on the

responsibility of spoon-feeding that content to the client, allowing the application or

web server to handle more requests.

Another challenge arising from the use of XML to transport data is, however, that

messages are all too often exceedingly fat. Message sizes in the 100's of kilobytes

are not uncommon, with messages reaching into the gigabytes in size less

common, but not unheard of.

As with the challenges related to the size of HTML and other text-based message

formats, the issues associated with the size of messages are easily addressed by

the right solution. A number of acceleration technologies exist today that are

capable of employing a number of compression techniques to reduce the overall

size of messages, thereby decreasing the time to transfer between server and client.

Industry standard compression technologies, stripping of white space, and other

data reduction technologies exist solely to respond to this challenge and reduce the

impact of large messages on the application infrastructure and delivery network.

Application acceleration-specific products as well as many of the features

associated with ADCs can provide many of these capabilities, as well as advanced

mechanisms for assisting with issues only found in browser-based applications

such as artificially imposed connection limitations that inhibit AJAX and browser-

based XML technologies from performing at full capacity. Dynamic content caching

is as applicable to XML as it is to HTML and related text-based formats, and can

increase the performance and capacity of SOA-based deployments dramatically.

WAN optimization controllers, as well, can provide additional improvements in

remote-office scenarios by taking advantage of symmetric data reduction

capabilities.

Conclusion
Many of the challenges associated with SOA deployments are the same challenges

we've encountered when deploying traditional web-based applications. The

underlying causes of these challenges may differ in a SOA, but the solutions to

address those challenges remain the same. The key to addressing SOA-related

challenges is to identify them as early as possible and include the appropriate

solution in the architecture to reduce the possibility of re-architecture being required

in a post-deployment environment.

Chal lenge Impact ADC Solut ion Benefit

Exponential
increase in
connections

Overhead of TCP connection
management adds to burden on servers
Additional hops add additional latency

Connection management
Hosting shared services

Reduces number of
servers required,
lowering costs
Reduces complexity and
time to manage
Maintains availability and
increases performance
Reduces requirement for
duplication of
functionality in deployed
services

XML
Message
size

More bandwidth consumed
More resources consumed to
parse/process messages

Content spooling
Compression
Caching
Hosting shared services
QoS

Increases capacity of
servers, reducing costs
and increasing
operational efficiency
Mitigates risk of attack
Prioritizes messages to
ensure SLA compliance

Scalability XML parsing is compute intensive and
requires horizontally scalable
infrastructure
XML appliances that offload XML
specific duties do not support
persistence, failover, or advanced load
balancing capabilities

ADCs support
persistence, advanced
load balancing capabilities
and failover scenarios

Maintains availability of
services
Increases performance
Protects investments in
technology by ensuring
horizontal scalability
Supports necessary
capabilities lacking in
other solutions

Security Exploitation of vulnerabilities in
application infrastructure
Theft of sensitive data

Application firewall
capabilities
Content scrubbing
Data validation

Prevents attacks from
reaching application
infrastructure
Improves performance of
application infrastructure
by reducing duplication
of code

WHITE PAPER

SOA: Challenges and Solutions
®

6

WHITE PAPER

SOA: Challenges and Solutions
®

https://f5.com/Portals/1/Images/whitepaper-images/SOA Challenges and Solutions/fig-2.png
https://f5.com/Portals/1/Images/whitepaper-images/SOA Challenges and Solutions/fig-3.png


•

•

•
•

•

•

•

•

•
•

•
•
•
•
•

•

•
•

•

•

• •

•
•

•

•

•

•

•
•

•

•

Overview
The benefits of SOA (Service-Oriented Architecture) have been well documented,

but the challenges associated with an enterprise wide SOA deployment have not.

While the distributed nature of a SOA encourages reuse and provides a high level of

agility for the business, it can also give rise to real challenges in the delivery of SOA-

based applications.

XML is the core technology enabler of SOA-based applications. Its verbose nature,

inherent lack of security, and the increase in connections between applications and

services required result in a number of challenges that are well-understood, and that

have proven solutions.

Challenge
The challenge in delivering SOA-based applications lies in identifying where potential

problems will arise and addressing them as early in the deployment cycle as

possible. Application delivery controllers are well suited to addressing both the well-

understood and unanticipated issues associated with delivering SOA-based

applications. Incorporating an application delivery controller (ADC) into the

deployment plans for your SOA can prevent unnecessary delays and even the need

to re-architect portions of your SOA infrastructure—saving man hours, expense,

and headaches.

Solution
SOA is both an architectural design pattern and a deployment methodology. That's

a nice way of saying that no one can define what any particular SOA implementation

should look like. While there have been attempts by various vendors in a number of

vertical SOA markets to create best practices for SOA environments, these have

largely failed due to the rather dynamic and organizational-specific nature of SOA

implementations. Because the services that comprise an SOA are business-focused

and encapsulate business specific entities, there is no single agreed upon definition

of what must exist and how components are deployed in order to bear the title SOA.

There are, however, a set of guiding principles underlying SOA that can be

considered a framework around which discussions on common SOA attributes and

challenges can be based. The distributed nature of services, for example, is a

fundamental attribute of all SOA implementations and as such challenges

associated with that deployment model can be applied to all SOA environments,

regardless of their actual design or implementation.

1. An SOA is comprised of distributed business services and achieves business

value through the reuse of those services.

2. An SOA is based upon industry accepted open standards.

3. An SOA reduces time to market through loose coupling of service interfaces

and its underlying implementation, enabling agility.

4. An SOA is heterogeneous and applications comprise n-tiers that may vary

widely based on the business process activity around which its composite

services are built.

These common attributes result in a common set of challenges that all

organizations face and that must be addressed at some point in the implementation

process. SOA guiding principles suggest that consideration be given to the

architecture of the deployment environment and infrastructure upon which services

will be deployed and delivered before said services are put into production, in parallel

with service definition and development efforts.

Fortunately, most of the challenges associated with deploying SOA are common to

all web-based application deployments. The difference between SOA-based

applications and traditional applications is that these challenges are often faced by

implementers earlier in the application lifecycle due to the challenges associated with

its core technology enabler, XML.

SOA Basics
In most cases, a SOA will be implemented using a variety of standards, the most

common being HTTP, WSDL (Web Services Definition Language), SOAP (Simple

Object Access Protocol), and XML (eXtensible Markup Language).These latter three

standards work together to deliver messages between services much in the same

way as the post office.

WSDL  →   Entry in an address book 
HTTP  →   Postal carrier (transportation)  
SOAP  →   Envelope (encapsulation)  
XML   →   Letter (message) 

If you're sending a letter then it is assumed you already know where to send it. In a

SOA that information comes from the WSDL, which lists the transportation options

(HTTP, FTP, SMTP) available, the possible addressees (remote functions available),

and the format requirements for data sent to each addressee (XML).

The same way an envelope has an address, SOAP carries with it information about

where the message should be delivered and who should open it. In the case of

SOAP and SOA, the addressee is not a who, but a what, as the addressee is really

the name of a remote function that should process the message inside. Just like a

"real" envelope, SOAP has specific formatting requirements and failure to properly

place information in the right place can cause delivery or processing issues.

With this information you can build a message based on the format requirements

(XML-based), put it in an envelope address to the receiver (SOAP), and then drop it

in the mailbox (HTTP) and wait for a response.

If you are the receiver of this message, the message must be delivered to you, you

have to read (parse) the envelope and determine the correct addressee (remote

function). The message then must be passed to the appropriate addressee (remote

function) for processing. Once the correct addressee has the letter, they can then

read (parse) the message and process it according to their designated function.

You'll note that this process requires a lot of reading (parsing) and formatting of

data, from the actual data you want to transfer to the envelope to the transport layer.

It also has the effect of adding two "layers" to the stack that must be processed.

This is one of the challenges associated with SOA—the computational overhead

associated with parsing and processing XML. Current analysis of the impact of XML

parsing and processing on server utilization estimates that approximately 30% of a

server's resources are consumed simply by the parsing and processing of XML. As

a reference point, SSL processing was also estimated to consume 30% of a server's

resources. Unlike SSL, XML currently has no effective server-based solution to

alleviate this burden such as hardware assisted processing, thus the issue of

increasing performance of XML-based services and applications must necessarily lie

outside the server and in the network.

Obviously a single SOAP message does not an SOA make. An SOA can be thought

of as a distributed organization that makes use of the postal service (network) to

deliver messages that assign tasks (remote functions) to individual business units

(services).

There is also nothing that disallows services from being built upon other

technologies. REST (Representational State Transfer) is often used as an example of

an alternative technology upon which an SOA can be built. REST services do not

use SOAP, choosing instead to use the HTTP URI to specify the addressee of the

message and putting the message right into the HTTP body. If SOAP is analogous

to a letter, then REST messages are most like a postcard where the message is not

encapsulated at all.

An SOA can mix and match both technologies, as well as others, though the few

existing best practices documents and SOA consultants are quick to nudge—and

even push—organizations toward standardizing upon one or the other. As many of

the benefits of an SOA including interoperability and platform independence rely on

an open-standards foundation, this push is not necessarily a bad one.

Connection Management
Architecting the distributed services upon which an SOA is built involves the

identification of common business entities and their related functions that can be

encapsulated in a service. A company's inventory, for example, is a common

business entity that is likely shared across all business units. Querying and updating

that inventory are two common functions performed by applications upon the

inventory. Similarly, a customer entity likely exists that is common to all applications

within an organization, with a common set of functions that can be performed on

that customer such as querying, updating, or creating.

In the past these common functions and entities were often duplicated across all

applications needing to apply application-specific logic to them. This necessarily

meant that any changes to those entities resulted in the need to modify every

application which used those entities. This is an inefficient model which leaves open

the very real possibility that differences between applications will occur in the

handling of these entities. These differences are replicated into the data stores,

causing problems between disparate applications needing access to that data to

perform specific tasks. The duplication of function across multiple applications also

has a deleterious effect on the ability of an organization to affect rapid change due to

the time and effort involved in deploying a change to any shared entity.

SOA resolves these issues by removing common entities and their associated

functions and establishing them as an atomic entity of their own (a service) that is

shared by all applications. Changes to the logic or data structure associated with

that entity are now reduced to a single code-set, and assures consistency across

the enterprise.

Traditional Application Design

SOA Application Design

While an SOA certainly improves consistency of application logic and reduces the

time required to introduce a change to business entities or their underlying data

structure, you will note that it has introduced complexity in terms of the number of

connections required.

This increase in connections required can have a negative impact on performance if

services are physically distributed across the network. The overhead associated with

TCP connection management is applied directly to the computational cost of the

application, usually to the detriment the application's overall performance. Also note

that each intermediary (i.e., device or application that touches an XML message)

incurs both TCP session and XML parsing performance penalties. As the number of

services associated with a single application increase, so also does the total

application response time increase.

There are essentially two ways in which ADCs can address this challenge. The first

is based on accepted and proven connection management technologies. By

allowing an ADC to manage the myriad interconnects between services, it can

offload the burden of managing TCP sessions on servers and increase their overall

capacity.

Connection management technology reduces the burden of TCP on servers

The second way in which ADCs address the challenges of distributed services is by

providing a network platform on which shared network services can be hosted.

Many of these functions—security, data scrubbing and transformation,

authentication, and caching are application specific, and therefore network-focused

point solutions can't host these shared services. They can only be supported by an

ADC or on an application platform such as those offered by BEA, IBM, Oracle, and

Microsoft.

By moving applicable network-focused shared services to an ADC, it reduces the

complexity of the SOA by consolidating services into a single network-hosted

platform without sacrificing performance. Hosting shared network services on an

ADC also has the added benefit of alleviating unnecessary parsing of XML from the

services in your SOA. By validating the credentials of an incoming message before it

reaches the service, the service only parses those messages which are authorized

to invoke its operations. This principle applies equally as well to XML and web-

application threat defense measures. Rather than impede performance by

duplicating scans for common threats such as SQL injection, overly large message

sizes, cookie tampering, and XML-specific attacks, it makes sense to provide a

single, shared service through which the message is initially validated and verified as

being free of malicious content.

By verifying the message at the point of ingress, it alleviates the need for each

service to perform that same verification and thus reduces the processing burden

on their respective servers and increasing overall capacity.

Scalability
The high computational cost of parsing and processing XML reduces the overall

capacity of already burdened application servers. The issue with XML arises from its

text-based formatting, which must be parsed and converted into objects that the

application server can understand and manipulate. This process is called

marshalling, and the performance of this process is heavily dependent upon the

complexity of the data. Each element in the data must be created and many

functions called to assign values to its attributes. In most environments this process

is accomplished via serialization, which is treated as a form of I/O within the system.

I/O in general is resource-intensive, requiring a lot of memory and CPU cycles on the

server regardless of platform.

This process occurs twice; once when the message is received to transform the

XML into a machine readable format, and again when the response is transformed

back into XML to be returned.

Because of the drain on resources caused by this process, and any additional

processing required such as connections and queries to databases, application

servers on which services are deployed are rapidly driven to high CPU utilization

states and a dwindling pool of available memory. This reduces the capability of the

application server to process requests in a timely fashion and introduces delay as

the system tries to judiciously process each request by sharing its resources

amongst them.

The effect of heavy load upon application servers is a well-understood problem, with

existing solutions such as ADCs assisting in the horizontal scaling of these servers

to distribute requests. Scaling application servers in an SOA environment becomes

important earlier in the deployment process because of the additional burden placed

on application servers by the parsing and processing of XML.

It is not only the application servers in an SOA environment that are in need of

scalability services. Many organizations have turned to XML gateway appliances

such as those from Reactivity and IBM DataPower to offload the compute heavy

XML processing and to provide additional XML-specific functionality such as WS-

Security, schema validation, virtualization of services, and transformation via XSLT

(eXtensible Stylesheet Language Transformation). These devices are capable of

performing these functions on XML-based messages much more efficiently than an

application server, but lack many of the enterprise-class features required of a

network device such as advanced load balancing algorithms, proven failover

methods, and session management.

In order to scale these devices an ADC is still a necessity. Care should be taken

when considering when the issue of load balancing and XML appliances arises.

While these devices are capable of load balancing services, their implementations

are rudimentary and inflexible in their deployment options. These devices do not

provide the advanced health-checking capabilities of ADCs, and can therefore fail to

properly route traffic as they have no awareness of the state of the application as is

the case with an ADC.

The traditional round-robin or least-connection algorithms used by both XML

appliances and application server clustering capabilities fail to recognize the

resource intensive nature of XML and are therefore incapable of truly distributing

requests within a pool or cluster of servers in the most efficient manner. The

capability of an application server to handle the load of SOA messages is dependent

not only on the number of requests it is currently attempting to handle, but on the

resources currently available. This means that advanced algorithms and capabilities

are required to determine the current state of the application and the server, which is

one of the domains of expertise of ADCs. A server may have only one connection or

be "next" in line to receive a request, but if it is currently parsing and processing a

very large XML message it may not have the memory or CPU cycles to process

another message and still meet SLA goals for both messages.

Security
XML is text-based and therefore human-readable. It is also web-based and hosted

on the same application infrastructure as "traditional" web-based applications,

making it subject to traditional web attacks.

Many of the same vulnerabilities that have plagued web-based applications are

applicable to XML-based applications. SQL injection is a common method of

attempting to extract unauthorized information from corporate databases or to

wreak general havoc by deleting important data. SQL injection can be as easily

accomplished through an XML message as it is a traditional HTTP GET or POST

formatted message.

Because this type of attack is well-understood by existing solutions designed to

protect web-applications, these same solutions provide a measure of security for

XML-based applications. So, too, can other security techniques such as signature

scanning mechanisms that seek to discover hidden viruses within web-borne

messages.

While it is always preferred that developers produce secure code, the reality is that if

they responded in code to every threat that they would spend most of their time

coding protection against new attacks, testing those solutions and then deploying

them, only to start again the next day. Additionally, such security-in-code

techniques require duplication of code throughout an application, which can

negatively impact performance and increases the possibility of other errors being

introduced into the code. The duplication of code is an anathema to the guiding

principles of SOA, which seeks to reduce the costs and time to market for software

solutions through the identification of such shared services.

By employing an application firewall to mitigate the risks associated with SOA and

distributed service environments, the principles of an SOA are upheld while

protecting applications from these types of well-understood threats. Moving as

much application security to the point of ingress has the added benefit of improving

performance, as messages that are clearly malicious never reach the application

server, thus reducing the burden on application infrastructure.

Bandwidth
A concern of many regarding XML is the increased size of messages flowing

between systems. Indeed, the SOAP envelope used by web services to carry the

XML messages itself adds a minimum of 256 bytes to every message, though

usually the increase is much higher.

The verbose nature of XML means that even the smallest of messages will become

approximately twice as large as the same message formatting as HTTP POST/GET

name-value pairs. When these messages are being transferred between servers in

the data center this increase oft has a negligible effect on bandwidth and transfer

times, owing to the fat nature of data center backbones. But with increased use of

Asynchronous JavaScript and XML (AJAX) as the basis for user-interfaces that

interact with SOA-based back end systems, it is important to consider the effect of

these increasingly large messages on delivery times to the client.

In addition to the potential use of AJAX clients to access SOA services, there is the

very real possibility that external partners and customers may be accessing services

via the public Internet, over an uncontrollable and often unpredictable public

network. In any case in which clients are accessing services via a public network

there is the possibility that a disparity exists between the client's ability to receive

responses as quickly as the server can send them. This has the effect of forcing

servers to segment data into small chunks that the client can easily consume, but

increases the total time required to deliver the content.

This ties up the application and web server, reducing the total number of clients it

can serve at any given time. Application delivery controllers address this issue by

employing a technique often called "content spooling." Content spooling allows an

ADC to mediate between the client and server and allows the server to send content

as fast as possible to the mediating device. The ADC then takes on the

responsibility of spoon-feeding that content to the client, allowing the application or

web server to handle more requests.

Another challenge arising from the use of XML to transport data is, however, that

messages are all too often exceedingly fat. Message sizes in the 100's of kilobytes

are not uncommon, with messages reaching into the gigabytes in size less

common, but not unheard of.

As with the challenges related to the size of HTML and other text-based message

formats, the issues associated with the size of messages are easily addressed by

the right solution. A number of acceleration technologies exist today that are

capable of employing a number of compression techniques to reduce the overall

size of messages, thereby decreasing the time to transfer between server and client.

Industry standard compression technologies, stripping of white space, and other

data reduction technologies exist solely to respond to this challenge and reduce the

impact of large messages on the application infrastructure and delivery network.

Application acceleration-specific products as well as many of the features

associated with ADCs can provide many of these capabilities, as well as advanced

mechanisms for assisting with issues only found in browser-based applications

such as artificially imposed connection limitations that inhibit AJAX and browser-

based XML technologies from performing at full capacity. Dynamic content caching

is as applicable to XML as it is to HTML and related text-based formats, and can

increase the performance and capacity of SOA-based deployments dramatically.

WAN optimization controllers, as well, can provide additional improvements in

remote-office scenarios by taking advantage of symmetric data reduction

capabilities.

Conclusion
Many of the challenges associated with SOA deployments are the same challenges

we've encountered when deploying traditional web-based applications. The

underlying causes of these challenges may differ in a SOA, but the solutions to

address those challenges remain the same. The key to addressing SOA-related

challenges is to identify them as early as possible and include the appropriate

solution in the architecture to reduce the possibility of re-architecture being required

in a post-deployment environment.

Chal lenge Impact ADC Solut ion Benefit

Exponential
increase in
connections

Overhead of TCP connection
management adds to burden on servers
Additional hops add additional latency

Connection management
Hosting shared services

Reduces number of
servers required,
lowering costs
Reduces complexity and
time to manage
Maintains availability and
increases performance
Reduces requirement for
duplication of
functionality in deployed
services

XML
Message
size

More bandwidth consumed
More resources consumed to
parse/process messages

Content spooling
Compression
Caching
Hosting shared services
QoS

Increases capacity of
servers, reducing costs
and increasing
operational efficiency
Mitigates risk of attack
Prioritizes messages to
ensure SLA compliance

Scalability XML parsing is compute intensive and
requires horizontally scalable
infrastructure
XML appliances that offload XML
specific duties do not support
persistence, failover, or advanced load
balancing capabilities

ADCs support
persistence, advanced
load balancing capabilities
and failover scenarios

Maintains availability of
services
Increases performance
Protects investments in
technology by ensuring
horizontal scalability
Supports necessary
capabilities lacking in
other solutions

Security Exploitation of vulnerabilities in
application infrastructure
Theft of sensitive data

Application firewall
capabilities
Content scrubbing
Data validation

Prevents attacks from
reaching application
infrastructure
Improves performance of
application infrastructure
by reducing duplication
of code

WHITE PAPER

SOA: Challenges and Solutions
®

7

WHITE PAPER

SOA: Challenges and Solutions
®

https://f5.com/Portals/1/Images/whitepaper-images/SOA Challenges and Solutions/fig-5.png


•

•

•
•

•

•

•

•

•
•

•
•
•
•
•

•

•
•

•

•

• •

•
•

•

•

•

•

•
•

•

•

Overview
The benefits of SOA (Service-Oriented Architecture) have been well documented,

but the challenges associated with an enterprise wide SOA deployment have not.

While the distributed nature of a SOA encourages reuse and provides a high level of

agility for the business, it can also give rise to real challenges in the delivery of SOA-

based applications.

XML is the core technology enabler of SOA-based applications. Its verbose nature,

inherent lack of security, and the increase in connections between applications and

services required result in a number of challenges that are well-understood, and that

have proven solutions.

Challenge
The challenge in delivering SOA-based applications lies in identifying where potential

problems will arise and addressing them as early in the deployment cycle as

possible. Application delivery controllers are well suited to addressing both the well-

understood and unanticipated issues associated with delivering SOA-based

applications. Incorporating an application delivery controller (ADC) into the

deployment plans for your SOA can prevent unnecessary delays and even the need

to re-architect portions of your SOA infrastructure—saving man hours, expense,

and headaches.

Solution
SOA is both an architectural design pattern and a deployment methodology. That's

a nice way of saying that no one can define what any particular SOA implementation

should look like. While there have been attempts by various vendors in a number of

vertical SOA markets to create best practices for SOA environments, these have

largely failed due to the rather dynamic and organizational-specific nature of SOA

implementations. Because the services that comprise an SOA are business-focused

and encapsulate business specific entities, there is no single agreed upon definition

of what must exist and how components are deployed in order to bear the title SOA.

There are, however, a set of guiding principles underlying SOA that can be

considered a framework around which discussions on common SOA attributes and

challenges can be based. The distributed nature of services, for example, is a

fundamental attribute of all SOA implementations and as such challenges

associated with that deployment model can be applied to all SOA environments,

regardless of their actual design or implementation.

1. An SOA is comprised of distributed business services and achieves business

value through the reuse of those services.

2. An SOA is based upon industry accepted open standards.

3. An SOA reduces time to market through loose coupling of service interfaces

and its underlying implementation, enabling agility.

4. An SOA is heterogeneous and applications comprise n-tiers that may vary

widely based on the business process activity around which its composite

services are built.

These common attributes result in a common set of challenges that all

organizations face and that must be addressed at some point in the implementation

process. SOA guiding principles suggest that consideration be given to the

architecture of the deployment environment and infrastructure upon which services

will be deployed and delivered before said services are put into production, in parallel

with service definition and development efforts.

Fortunately, most of the challenges associated with deploying SOA are common to

all web-based application deployments. The difference between SOA-based

applications and traditional applications is that these challenges are often faced by

implementers earlier in the application lifecycle due to the challenges associated with

its core technology enabler, XML.

SOA Basics
In most cases, a SOA will be implemented using a variety of standards, the most

common being HTTP, WSDL (Web Services Definition Language), SOAP (Simple

Object Access Protocol), and XML (eXtensible Markup Language).These latter three

standards work together to deliver messages between services much in the same

way as the post office.

WSDL  →   Entry in an address book 
HTTP  →   Postal carrier (transportation)  
SOAP  →   Envelope (encapsulation)  
XML   →   Letter (message) 

If you're sending a letter then it is assumed you already know where to send it. In a

SOA that information comes from the WSDL, which lists the transportation options

(HTTP, FTP, SMTP) available, the possible addressees (remote functions available),

and the format requirements for data sent to each addressee (XML).

The same way an envelope has an address, SOAP carries with it information about

where the message should be delivered and who should open it. In the case of

SOAP and SOA, the addressee is not a who, but a what, as the addressee is really

the name of a remote function that should process the message inside. Just like a

"real" envelope, SOAP has specific formatting requirements and failure to properly

place information in the right place can cause delivery or processing issues.

With this information you can build a message based on the format requirements

(XML-based), put it in an envelope address to the receiver (SOAP), and then drop it

in the mailbox (HTTP) and wait for a response.

If you are the receiver of this message, the message must be delivered to you, you

have to read (parse) the envelope and determine the correct addressee (remote

function). The message then must be passed to the appropriate addressee (remote

function) for processing. Once the correct addressee has the letter, they can then

read (parse) the message and process it according to their designated function.

You'll note that this process requires a lot of reading (parsing) and formatting of

data, from the actual data you want to transfer to the envelope to the transport layer.

It also has the effect of adding two "layers" to the stack that must be processed.

This is one of the challenges associated with SOA—the computational overhead

associated with parsing and processing XML. Current analysis of the impact of XML

parsing and processing on server utilization estimates that approximately 30% of a

server's resources are consumed simply by the parsing and processing of XML. As

a reference point, SSL processing was also estimated to consume 30% of a server's

resources. Unlike SSL, XML currently has no effective server-based solution to

alleviate this burden such as hardware assisted processing, thus the issue of

increasing performance of XML-based services and applications must necessarily lie

outside the server and in the network.

Obviously a single SOAP message does not an SOA make. An SOA can be thought

of as a distributed organization that makes use of the postal service (network) to

deliver messages that assign tasks (remote functions) to individual business units

(services).

There is also nothing that disallows services from being built upon other

technologies. REST (Representational State Transfer) is often used as an example of

an alternative technology upon which an SOA can be built. REST services do not

use SOAP, choosing instead to use the HTTP URI to specify the addressee of the

message and putting the message right into the HTTP body. If SOAP is analogous

to a letter, then REST messages are most like a postcard where the message is not

encapsulated at all.

An SOA can mix and match both technologies, as well as others, though the few

existing best practices documents and SOA consultants are quick to nudge—and

even push—organizations toward standardizing upon one or the other. As many of

the benefits of an SOA including interoperability and platform independence rely on

an open-standards foundation, this push is not necessarily a bad one.

Connection Management
Architecting the distributed services upon which an SOA is built involves the

identification of common business entities and their related functions that can be

encapsulated in a service. A company's inventory, for example, is a common

business entity that is likely shared across all business units. Querying and updating

that inventory are two common functions performed by applications upon the

inventory. Similarly, a customer entity likely exists that is common to all applications

within an organization, with a common set of functions that can be performed on

that customer such as querying, updating, or creating.

In the past these common functions and entities were often duplicated across all

applications needing to apply application-specific logic to them. This necessarily

meant that any changes to those entities resulted in the need to modify every

application which used those entities. This is an inefficient model which leaves open

the very real possibility that differences between applications will occur in the

handling of these entities. These differences are replicated into the data stores,

causing problems between disparate applications needing access to that data to

perform specific tasks. The duplication of function across multiple applications also

has a deleterious effect on the ability of an organization to affect rapid change due to

the time and effort involved in deploying a change to any shared entity.

SOA resolves these issues by removing common entities and their associated

functions and establishing them as an atomic entity of their own (a service) that is

shared by all applications. Changes to the logic or data structure associated with

that entity are now reduced to a single code-set, and assures consistency across

the enterprise.

Traditional Application Design

SOA Application Design

While an SOA certainly improves consistency of application logic and reduces the

time required to introduce a change to business entities or their underlying data

structure, you will note that it has introduced complexity in terms of the number of

connections required.

This increase in connections required can have a negative impact on performance if

services are physically distributed across the network. The overhead associated with

TCP connection management is applied directly to the computational cost of the

application, usually to the detriment the application's overall performance. Also note

that each intermediary (i.e., device or application that touches an XML message)

incurs both TCP session and XML parsing performance penalties. As the number of

services associated with a single application increase, so also does the total

application response time increase.

There are essentially two ways in which ADCs can address this challenge. The first

is based on accepted and proven connection management technologies. By

allowing an ADC to manage the myriad interconnects between services, it can

offload the burden of managing TCP sessions on servers and increase their overall

capacity.

Connection management technology reduces the burden of TCP on servers

The second way in which ADCs address the challenges of distributed services is by

providing a network platform on which shared network services can be hosted.

Many of these functions—security, data scrubbing and transformation,

authentication, and caching are application specific, and therefore network-focused

point solutions can't host these shared services. They can only be supported by an

ADC or on an application platform such as those offered by BEA, IBM, Oracle, and

Microsoft.

By moving applicable network-focused shared services to an ADC, it reduces the

complexity of the SOA by consolidating services into a single network-hosted

platform without sacrificing performance. Hosting shared network services on an

ADC also has the added benefit of alleviating unnecessary parsing of XML from the

services in your SOA. By validating the credentials of an incoming message before it

reaches the service, the service only parses those messages which are authorized

to invoke its operations. This principle applies equally as well to XML and web-

application threat defense measures. Rather than impede performance by

duplicating scans for common threats such as SQL injection, overly large message

sizes, cookie tampering, and XML-specific attacks, it makes sense to provide a

single, shared service through which the message is initially validated and verified as

being free of malicious content.

By verifying the message at the point of ingress, it alleviates the need for each

service to perform that same verification and thus reduces the processing burden

on their respective servers and increasing overall capacity.

Scalability
The high computational cost of parsing and processing XML reduces the overall

capacity of already burdened application servers. The issue with XML arises from its

text-based formatting, which must be parsed and converted into objects that the

application server can understand and manipulate. This process is called

marshalling, and the performance of this process is heavily dependent upon the

complexity of the data. Each element in the data must be created and many

functions called to assign values to its attributes. In most environments this process

is accomplished via serialization, which is treated as a form of I/O within the system.

I/O in general is resource-intensive, requiring a lot of memory and CPU cycles on the

server regardless of platform.

This process occurs twice; once when the message is received to transform the

XML into a machine readable format, and again when the response is transformed

back into XML to be returned.

Because of the drain on resources caused by this process, and any additional

processing required such as connections and queries to databases, application

servers on which services are deployed are rapidly driven to high CPU utilization

states and a dwindling pool of available memory. This reduces the capability of the

application server to process requests in a timely fashion and introduces delay as

the system tries to judiciously process each request by sharing its resources

amongst them.

The effect of heavy load upon application servers is a well-understood problem, with

existing solutions such as ADCs assisting in the horizontal scaling of these servers

to distribute requests. Scaling application servers in an SOA environment becomes

important earlier in the deployment process because of the additional burden placed

on application servers by the parsing and processing of XML.

It is not only the application servers in an SOA environment that are in need of

scalability services. Many organizations have turned to XML gateway appliances

such as those from Reactivity and IBM DataPower to offload the compute heavy

XML processing and to provide additional XML-specific functionality such as WS-

Security, schema validation, virtualization of services, and transformation via XSLT

(eXtensible Stylesheet Language Transformation). These devices are capable of

performing these functions on XML-based messages much more efficiently than an

application server, but lack many of the enterprise-class features required of a

network device such as advanced load balancing algorithms, proven failover

methods, and session management.

In order to scale these devices an ADC is still a necessity. Care should be taken

when considering when the issue of load balancing and XML appliances arises.

While these devices are capable of load balancing services, their implementations

are rudimentary and inflexible in their deployment options. These devices do not

provide the advanced health-checking capabilities of ADCs, and can therefore fail to

properly route traffic as they have no awareness of the state of the application as is

the case with an ADC.

The traditional round-robin or least-connection algorithms used by both XML

appliances and application server clustering capabilities fail to recognize the

resource intensive nature of XML and are therefore incapable of truly distributing

requests within a pool or cluster of servers in the most efficient manner. The

capability of an application server to handle the load of SOA messages is dependent

not only on the number of requests it is currently attempting to handle, but on the

resources currently available. This means that advanced algorithms and capabilities

are required to determine the current state of the application and the server, which is

one of the domains of expertise of ADCs. A server may have only one connection or

be "next" in line to receive a request, but if it is currently parsing and processing a

very large XML message it may not have the memory or CPU cycles to process

another message and still meet SLA goals for both messages.

Security
XML is text-based and therefore human-readable. It is also web-based and hosted

on the same application infrastructure as "traditional" web-based applications,

making it subject to traditional web attacks.

Many of the same vulnerabilities that have plagued web-based applications are

applicable to XML-based applications. SQL injection is a common method of

attempting to extract unauthorized information from corporate databases or to

wreak general havoc by deleting important data. SQL injection can be as easily

accomplished through an XML message as it is a traditional HTTP GET or POST

formatted message.

Because this type of attack is well-understood by existing solutions designed to

protect web-applications, these same solutions provide a measure of security for

XML-based applications. So, too, can other security techniques such as signature

scanning mechanisms that seek to discover hidden viruses within web-borne

messages.

While it is always preferred that developers produce secure code, the reality is that if

they responded in code to every threat that they would spend most of their time

coding protection against new attacks, testing those solutions and then deploying

them, only to start again the next day. Additionally, such security-in-code

techniques require duplication of code throughout an application, which can

negatively impact performance and increases the possibility of other errors being

introduced into the code. The duplication of code is an anathema to the guiding

principles of SOA, which seeks to reduce the costs and time to market for software

solutions through the identification of such shared services.

By employing an application firewall to mitigate the risks associated with SOA and

distributed service environments, the principles of an SOA are upheld while

protecting applications from these types of well-understood threats. Moving as

much application security to the point of ingress has the added benefit of improving

performance, as messages that are clearly malicious never reach the application

server, thus reducing the burden on application infrastructure.

Bandwidth
A concern of many regarding XML is the increased size of messages flowing

between systems. Indeed, the SOAP envelope used by web services to carry the

XML messages itself adds a minimum of 256 bytes to every message, though

usually the increase is much higher.

The verbose nature of XML means that even the smallest of messages will become

approximately twice as large as the same message formatting as HTTP POST/GET

name-value pairs. When these messages are being transferred between servers in

the data center this increase oft has a negligible effect on bandwidth and transfer

times, owing to the fat nature of data center backbones. But with increased use of

Asynchronous JavaScript and XML (AJAX) as the basis for user-interfaces that

interact with SOA-based back end systems, it is important to consider the effect of

these increasingly large messages on delivery times to the client.

In addition to the potential use of AJAX clients to access SOA services, there is the

very real possibility that external partners and customers may be accessing services

via the public Internet, over an uncontrollable and often unpredictable public

network. In any case in which clients are accessing services via a public network

there is the possibility that a disparity exists between the client's ability to receive

responses as quickly as the server can send them. This has the effect of forcing

servers to segment data into small chunks that the client can easily consume, but

increases the total time required to deliver the content.

This ties up the application and web server, reducing the total number of clients it

can serve at any given time. Application delivery controllers address this issue by

employing a technique often called "content spooling." Content spooling allows an

ADC to mediate between the client and server and allows the server to send content

as fast as possible to the mediating device. The ADC then takes on the

responsibility of spoon-feeding that content to the client, allowing the application or

web server to handle more requests.

Another challenge arising from the use of XML to transport data is, however, that

messages are all too often exceedingly fat. Message sizes in the 100's of kilobytes

are not uncommon, with messages reaching into the gigabytes in size less

common, but not unheard of.

As with the challenges related to the size of HTML and other text-based message

formats, the issues associated with the size of messages are easily addressed by

the right solution. A number of acceleration technologies exist today that are

capable of employing a number of compression techniques to reduce the overall

size of messages, thereby decreasing the time to transfer between server and client.

Industry standard compression technologies, stripping of white space, and other

data reduction technologies exist solely to respond to this challenge and reduce the

impact of large messages on the application infrastructure and delivery network.

Application acceleration-specific products as well as many of the features

associated with ADCs can provide many of these capabilities, as well as advanced

mechanisms for assisting with issues only found in browser-based applications

such as artificially imposed connection limitations that inhibit AJAX and browser-

based XML technologies from performing at full capacity. Dynamic content caching

is as applicable to XML as it is to HTML and related text-based formats, and can

increase the performance and capacity of SOA-based deployments dramatically.

WAN optimization controllers, as well, can provide additional improvements in

remote-office scenarios by taking advantage of symmetric data reduction

capabilities.

Conclusion
Many of the challenges associated with SOA deployments are the same challenges

we've encountered when deploying traditional web-based applications. The

underlying causes of these challenges may differ in a SOA, but the solutions to

address those challenges remain the same. The key to addressing SOA-related

challenges is to identify them as early as possible and include the appropriate

solution in the architecture to reduce the possibility of re-architecture being required

in a post-deployment environment.

Chal lenge Impact ADC Solut ion Benefit

Exponential
increase in
connections

Overhead of TCP connection
management adds to burden on servers
Additional hops add additional latency

Connection management
Hosting shared services

Reduces number of
servers required,
lowering costs
Reduces complexity and
time to manage
Maintains availability and
increases performance
Reduces requirement for
duplication of
functionality in deployed
services

XML
Message
size

More bandwidth consumed
More resources consumed to
parse/process messages

Content spooling
Compression
Caching
Hosting shared services
QoS

Increases capacity of
servers, reducing costs
and increasing
operational efficiency
Mitigates risk of attack
Prioritizes messages to
ensure SLA compliance

Scalability XML parsing is compute intensive and
requires horizontally scalable
infrastructure
XML appliances that offload XML
specific duties do not support
persistence, failover, or advanced load
balancing capabilities

ADCs support
persistence, advanced
load balancing capabilities
and failover scenarios

Maintains availability of
services
Increases performance
Protects investments in
technology by ensuring
horizontal scalability
Supports necessary
capabilities lacking in
other solutions

Security Exploitation of vulnerabilities in
application infrastructure
Theft of sensitive data

Application firewall
capabilities
Content scrubbing
Data validation

Prevents attacks from
reaching application
infrastructure
Improves performance of
application infrastructure
by reducing duplication
of code

WHITE PAPER

SOA: Challenges and Solutions
®

8

WHITE PAPER

SOA: Challenges and Solutions
®



•

•

•
•

•

•

•

•

•
•

•
•
•
•
•

•

•
•

•

•

• •

•
•

•

•

•

•

•
•

•

•

Overview
The benefits of SOA (Service-Oriented Architecture) have been well documented,

but the challenges associated with an enterprise wide SOA deployment have not.

While the distributed nature of a SOA encourages reuse and provides a high level of

agility for the business, it can also give rise to real challenges in the delivery of SOA-

based applications.

XML is the core technology enabler of SOA-based applications. Its verbose nature,

inherent lack of security, and the increase in connections between applications and

services required result in a number of challenges that are well-understood, and that

have proven solutions.

Challenge
The challenge in delivering SOA-based applications lies in identifying where potential

problems will arise and addressing them as early in the deployment cycle as

possible. Application delivery controllers are well suited to addressing both the well-

understood and unanticipated issues associated with delivering SOA-based

applications. Incorporating an application delivery controller (ADC) into the

deployment plans for your SOA can prevent unnecessary delays and even the need

to re-architect portions of your SOA infrastructure—saving man hours, expense,

and headaches.

Solution
SOA is both an architectural design pattern and a deployment methodology. That's

a nice way of saying that no one can define what any particular SOA implementation

should look like. While there have been attempts by various vendors in a number of

vertical SOA markets to create best practices for SOA environments, these have

largely failed due to the rather dynamic and organizational-specific nature of SOA

implementations. Because the services that comprise an SOA are business-focused

and encapsulate business specific entities, there is no single agreed upon definition

of what must exist and how components are deployed in order to bear the title SOA.

There are, however, a set of guiding principles underlying SOA that can be

considered a framework around which discussions on common SOA attributes and

challenges can be based. The distributed nature of services, for example, is a

fundamental attribute of all SOA implementations and as such challenges

associated with that deployment model can be applied to all SOA environments,

regardless of their actual design or implementation.

1. An SOA is comprised of distributed business services and achieves business

value through the reuse of those services.

2. An SOA is based upon industry accepted open standards.

3. An SOA reduces time to market through loose coupling of service interfaces

and its underlying implementation, enabling agility.

4. An SOA is heterogeneous and applications comprise n-tiers that may vary

widely based on the business process activity around which its composite

services are built.

These common attributes result in a common set of challenges that all

organizations face and that must be addressed at some point in the implementation

process. SOA guiding principles suggest that consideration be given to the

architecture of the deployment environment and infrastructure upon which services

will be deployed and delivered before said services are put into production, in parallel

with service definition and development efforts.

Fortunately, most of the challenges associated with deploying SOA are common to

all web-based application deployments. The difference between SOA-based

applications and traditional applications is that these challenges are often faced by

implementers earlier in the application lifecycle due to the challenges associated with

its core technology enabler, XML.

SOA Basics
In most cases, a SOA will be implemented using a variety of standards, the most

common being HTTP, WSDL (Web Services Definition Language), SOAP (Simple

Object Access Protocol), and XML (eXtensible Markup Language).These latter three

standards work together to deliver messages between services much in the same

way as the post office.

WSDL  →   Entry in an address book 
HTTP  →   Postal carrier (transportation)  
SOAP  →   Envelope (encapsulation)  
XML   →   Letter (message) 

If you're sending a letter then it is assumed you already know where to send it. In a

SOA that information comes from the WSDL, which lists the transportation options

(HTTP, FTP, SMTP) available, the possible addressees (remote functions available),

and the format requirements for data sent to each addressee (XML).

The same way an envelope has an address, SOAP carries with it information about

where the message should be delivered and who should open it. In the case of

SOAP and SOA, the addressee is not a who, but a what, as the addressee is really

the name of a remote function that should process the message inside. Just like a

"real" envelope, SOAP has specific formatting requirements and failure to properly

place information in the right place can cause delivery or processing issues.

With this information you can build a message based on the format requirements

(XML-based), put it in an envelope address to the receiver (SOAP), and then drop it

in the mailbox (HTTP) and wait for a response.

If you are the receiver of this message, the message must be delivered to you, you

have to read (parse) the envelope and determine the correct addressee (remote

function). The message then must be passed to the appropriate addressee (remote

function) for processing. Once the correct addressee has the letter, they can then

read (parse) the message and process it according to their designated function.

You'll note that this process requires a lot of reading (parsing) and formatting of

data, from the actual data you want to transfer to the envelope to the transport layer.

It also has the effect of adding two "layers" to the stack that must be processed.

This is one of the challenges associated with SOA—the computational overhead

associated with parsing and processing XML. Current analysis of the impact of XML

parsing and processing on server utilization estimates that approximately 30% of a

server's resources are consumed simply by the parsing and processing of XML. As

a reference point, SSL processing was also estimated to consume 30% of a server's

resources. Unlike SSL, XML currently has no effective server-based solution to

alleviate this burden such as hardware assisted processing, thus the issue of

increasing performance of XML-based services and applications must necessarily lie

outside the server and in the network.

Obviously a single SOAP message does not an SOA make. An SOA can be thought

of as a distributed organization that makes use of the postal service (network) to

deliver messages that assign tasks (remote functions) to individual business units

(services).

There is also nothing that disallows services from being built upon other

technologies. REST (Representational State Transfer) is often used as an example of

an alternative technology upon which an SOA can be built. REST services do not

use SOAP, choosing instead to use the HTTP URI to specify the addressee of the

message and putting the message right into the HTTP body. If SOAP is analogous

to a letter, then REST messages are most like a postcard where the message is not

encapsulated at all.

An SOA can mix and match both technologies, as well as others, though the few

existing best practices documents and SOA consultants are quick to nudge—and

even push—organizations toward standardizing upon one or the other. As many of

the benefits of an SOA including interoperability and platform independence rely on

an open-standards foundation, this push is not necessarily a bad one.

Connection Management
Architecting the distributed services upon which an SOA is built involves the

identification of common business entities and their related functions that can be

encapsulated in a service. A company's inventory, for example, is a common

business entity that is likely shared across all business units. Querying and updating

that inventory are two common functions performed by applications upon the

inventory. Similarly, a customer entity likely exists that is common to all applications

within an organization, with a common set of functions that can be performed on

that customer such as querying, updating, or creating.

In the past these common functions and entities were often duplicated across all

applications needing to apply application-specific logic to them. This necessarily

meant that any changes to those entities resulted in the need to modify every

application which used those entities. This is an inefficient model which leaves open

the very real possibility that differences between applications will occur in the

handling of these entities. These differences are replicated into the data stores,

causing problems between disparate applications needing access to that data to

perform specific tasks. The duplication of function across multiple applications also

has a deleterious effect on the ability of an organization to affect rapid change due to

the time and effort involved in deploying a change to any shared entity.

SOA resolves these issues by removing common entities and their associated

functions and establishing them as an atomic entity of their own (a service) that is

shared by all applications. Changes to the logic or data structure associated with

that entity are now reduced to a single code-set, and assures consistency across

the enterprise.

Traditional Application Design

SOA Application Design

While an SOA certainly improves consistency of application logic and reduces the

time required to introduce a change to business entities or their underlying data

structure, you will note that it has introduced complexity in terms of the number of

connections required.

This increase in connections required can have a negative impact on performance if

services are physically distributed across the network. The overhead associated with

TCP connection management is applied directly to the computational cost of the

application, usually to the detriment the application's overall performance. Also note

that each intermediary (i.e., device or application that touches an XML message)

incurs both TCP session and XML parsing performance penalties. As the number of

services associated with a single application increase, so also does the total

application response time increase.

There are essentially two ways in which ADCs can address this challenge. The first

is based on accepted and proven connection management technologies. By

allowing an ADC to manage the myriad interconnects between services, it can

offload the burden of managing TCP sessions on servers and increase their overall

capacity.

Connection management technology reduces the burden of TCP on servers

The second way in which ADCs address the challenges of distributed services is by

providing a network platform on which shared network services can be hosted.

Many of these functions—security, data scrubbing and transformation,

authentication, and caching are application specific, and therefore network-focused

point solutions can't host these shared services. They can only be supported by an

ADC or on an application platform such as those offered by BEA, IBM, Oracle, and

Microsoft.

By moving applicable network-focused shared services to an ADC, it reduces the

complexity of the SOA by consolidating services into a single network-hosted

platform without sacrificing performance. Hosting shared network services on an

ADC also has the added benefit of alleviating unnecessary parsing of XML from the

services in your SOA. By validating the credentials of an incoming message before it

reaches the service, the service only parses those messages which are authorized

to invoke its operations. This principle applies equally as well to XML and web-

application threat defense measures. Rather than impede performance by

duplicating scans for common threats such as SQL injection, overly large message

sizes, cookie tampering, and XML-specific attacks, it makes sense to provide a

single, shared service through which the message is initially validated and verified as

being free of malicious content.

By verifying the message at the point of ingress, it alleviates the need for each

service to perform that same verification and thus reduces the processing burden

on their respective servers and increasing overall capacity.

Scalability
The high computational cost of parsing and processing XML reduces the overall

capacity of already burdened application servers. The issue with XML arises from its

text-based formatting, which must be parsed and converted into objects that the

application server can understand and manipulate. This process is called

marshalling, and the performance of this process is heavily dependent upon the

complexity of the data. Each element in the data must be created and many

functions called to assign values to its attributes. In most environments this process

is accomplished via serialization, which is treated as a form of I/O within the system.

I/O in general is resource-intensive, requiring a lot of memory and CPU cycles on the

server regardless of platform.

This process occurs twice; once when the message is received to transform the

XML into a machine readable format, and again when the response is transformed

back into XML to be returned.

Because of the drain on resources caused by this process, and any additional

processing required such as connections and queries to databases, application

servers on which services are deployed are rapidly driven to high CPU utilization

states and a dwindling pool of available memory. This reduces the capability of the

application server to process requests in a timely fashion and introduces delay as

the system tries to judiciously process each request by sharing its resources

amongst them.

The effect of heavy load upon application servers is a well-understood problem, with

existing solutions such as ADCs assisting in the horizontal scaling of these servers

to distribute requests. Scaling application servers in an SOA environment becomes

important earlier in the deployment process because of the additional burden placed

on application servers by the parsing and processing of XML.

It is not only the application servers in an SOA environment that are in need of

scalability services. Many organizations have turned to XML gateway appliances

such as those from Reactivity and IBM DataPower to offload the compute heavy

XML processing and to provide additional XML-specific functionality such as WS-

Security, schema validation, virtualization of services, and transformation via XSLT

(eXtensible Stylesheet Language Transformation). These devices are capable of

performing these functions on XML-based messages much more efficiently than an

application server, but lack many of the enterprise-class features required of a

network device such as advanced load balancing algorithms, proven failover

methods, and session management.

In order to scale these devices an ADC is still a necessity. Care should be taken

when considering when the issue of load balancing and XML appliances arises.

While these devices are capable of load balancing services, their implementations

are rudimentary and inflexible in their deployment options. These devices do not

provide the advanced health-checking capabilities of ADCs, and can therefore fail to

properly route traffic as they have no awareness of the state of the application as is

the case with an ADC.

The traditional round-robin or least-connection algorithms used by both XML

appliances and application server clustering capabilities fail to recognize the

resource intensive nature of XML and are therefore incapable of truly distributing

requests within a pool or cluster of servers in the most efficient manner. The

capability of an application server to handle the load of SOA messages is dependent

not only on the number of requests it is currently attempting to handle, but on the

resources currently available. This means that advanced algorithms and capabilities

are required to determine the current state of the application and the server, which is

one of the domains of expertise of ADCs. A server may have only one connection or

be "next" in line to receive a request, but if it is currently parsing and processing a

very large XML message it may not have the memory or CPU cycles to process

another message and still meet SLA goals for both messages.

Security
XML is text-based and therefore human-readable. It is also web-based and hosted

on the same application infrastructure as "traditional" web-based applications,

making it subject to traditional web attacks.

Many of the same vulnerabilities that have plagued web-based applications are

applicable to XML-based applications. SQL injection is a common method of

attempting to extract unauthorized information from corporate databases or to

wreak general havoc by deleting important data. SQL injection can be as easily

accomplished through an XML message as it is a traditional HTTP GET or POST

formatted message.

Because this type of attack is well-understood by existing solutions designed to

protect web-applications, these same solutions provide a measure of security for

XML-based applications. So, too, can other security techniques such as signature

scanning mechanisms that seek to discover hidden viruses within web-borne

messages.

While it is always preferred that developers produce secure code, the reality is that if

they responded in code to every threat that they would spend most of their time

coding protection against new attacks, testing those solutions and then deploying

them, only to start again the next day. Additionally, such security-in-code

techniques require duplication of code throughout an application, which can

negatively impact performance and increases the possibility of other errors being

introduced into the code. The duplication of code is an anathema to the guiding

principles of SOA, which seeks to reduce the costs and time to market for software

solutions through the identification of such shared services.

By employing an application firewall to mitigate the risks associated with SOA and

distributed service environments, the principles of an SOA are upheld while

protecting applications from these types of well-understood threats. Moving as

much application security to the point of ingress has the added benefit of improving

performance, as messages that are clearly malicious never reach the application

server, thus reducing the burden on application infrastructure.

Bandwidth
A concern of many regarding XML is the increased size of messages flowing

between systems. Indeed, the SOAP envelope used by web services to carry the

XML messages itself adds a minimum of 256 bytes to every message, though

usually the increase is much higher.

The verbose nature of XML means that even the smallest of messages will become

approximately twice as large as the same message formatting as HTTP POST/GET

name-value pairs. When these messages are being transferred between servers in

the data center this increase oft has a negligible effect on bandwidth and transfer

times, owing to the fat nature of data center backbones. But with increased use of

Asynchronous JavaScript and XML (AJAX) as the basis for user-interfaces that

interact with SOA-based back end systems, it is important to consider the effect of

these increasingly large messages on delivery times to the client.

In addition to the potential use of AJAX clients to access SOA services, there is the

very real possibility that external partners and customers may be accessing services

via the public Internet, over an uncontrollable and often unpredictable public

network. In any case in which clients are accessing services via a public network

there is the possibility that a disparity exists between the client's ability to receive

responses as quickly as the server can send them. This has the effect of forcing

servers to segment data into small chunks that the client can easily consume, but

increases the total time required to deliver the content.

This ties up the application and web server, reducing the total number of clients it

can serve at any given time. Application delivery controllers address this issue by

employing a technique often called "content spooling." Content spooling allows an

ADC to mediate between the client and server and allows the server to send content

as fast as possible to the mediating device. The ADC then takes on the

responsibility of spoon-feeding that content to the client, allowing the application or

web server to handle more requests.

Another challenge arising from the use of XML to transport data is, however, that

messages are all too often exceedingly fat. Message sizes in the 100's of kilobytes

are not uncommon, with messages reaching into the gigabytes in size less

common, but not unheard of.

As with the challenges related to the size of HTML and other text-based message

formats, the issues associated with the size of messages are easily addressed by

the right solution. A number of acceleration technologies exist today that are

capable of employing a number of compression techniques to reduce the overall

size of messages, thereby decreasing the time to transfer between server and client.

Industry standard compression technologies, stripping of white space, and other

data reduction technologies exist solely to respond to this challenge and reduce the

impact of large messages on the application infrastructure and delivery network.

Application acceleration-specific products as well as many of the features

associated with ADCs can provide many of these capabilities, as well as advanced

mechanisms for assisting with issues only found in browser-based applications

such as artificially imposed connection limitations that inhibit AJAX and browser-

based XML technologies from performing at full capacity. Dynamic content caching

is as applicable to XML as it is to HTML and related text-based formats, and can

increase the performance and capacity of SOA-based deployments dramatically.

WAN optimization controllers, as well, can provide additional improvements in

remote-office scenarios by taking advantage of symmetric data reduction

capabilities.

Conclusion
Many of the challenges associated with SOA deployments are the same challenges

we've encountered when deploying traditional web-based applications. The

underlying causes of these challenges may differ in a SOA, but the solutions to

address those challenges remain the same. The key to addressing SOA-related

challenges is to identify them as early as possible and include the appropriate

solution in the architecture to reduce the possibility of re-architecture being required

in a post-deployment environment.

Chal lenge Impact ADC Solut ion Benefit

Exponential
increase in
connections

Overhead of TCP connection
management adds to burden on servers
Additional hops add additional latency

Connection management
Hosting shared services

Reduces number of
servers required,
lowering costs
Reduces complexity and
time to manage
Maintains availability and
increases performance
Reduces requirement for
duplication of
functionality in deployed
services

XML
Message
size

More bandwidth consumed
More resources consumed to
parse/process messages

Content spooling
Compression
Caching
Hosting shared services
QoS

Increases capacity of
servers, reducing costs
and increasing
operational efficiency
Mitigates risk of attack
Prioritizes messages to
ensure SLA compliance

Scalability XML parsing is compute intensive and
requires horizontally scalable
infrastructure
XML appliances that offload XML
specific duties do not support
persistence, failover, or advanced load
balancing capabilities

ADCs support
persistence, advanced
load balancing capabilities
and failover scenarios

Maintains availability of
services
Increases performance
Protects investments in
technology by ensuring
horizontal scalability
Supports necessary
capabilities lacking in
other solutions

Security Exploitation of vulnerabilities in
application infrastructure
Theft of sensitive data

Application firewall
capabilities
Content scrubbing
Data validation

Prevents attacks from
reaching application
infrastructure
Improves performance of
application infrastructure
by reducing duplication
of code

WHITE PAPER

SOA: Challenges and Solutions
®

9

WHITE PAPER

SOA: Challenges and Solutions
®



•

•

•
•

•

•

•

•

•
•

•
•
•
•
•

•

•
•

•

•

• •

•
•

•

•

•

•

•
•

•

•

Overview
The benefits of SOA (Service-Oriented Architecture) have been well documented,

but the challenges associated with an enterprise wide SOA deployment have not.

While the distributed nature of a SOA encourages reuse and provides a high level of

agility for the business, it can also give rise to real challenges in the delivery of SOA-

based applications.

XML is the core technology enabler of SOA-based applications. Its verbose nature,

inherent lack of security, and the increase in connections between applications and

services required result in a number of challenges that are well-understood, and that

have proven solutions.

Challenge
The challenge in delivering SOA-based applications lies in identifying where potential

problems will arise and addressing them as early in the deployment cycle as

possible. Application delivery controllers are well suited to addressing both the well-

understood and unanticipated issues associated with delivering SOA-based

applications. Incorporating an application delivery controller (ADC) into the

deployment plans for your SOA can prevent unnecessary delays and even the need

to re-architect portions of your SOA infrastructure—saving man hours, expense,

and headaches.

Solution
SOA is both an architectural design pattern and a deployment methodology. That's

a nice way of saying that no one can define what any particular SOA implementation

should look like. While there have been attempts by various vendors in a number of

vertical SOA markets to create best practices for SOA environments, these have

largely failed due to the rather dynamic and organizational-specific nature of SOA

implementations. Because the services that comprise an SOA are business-focused

and encapsulate business specific entities, there is no single agreed upon definition

of what must exist and how components are deployed in order to bear the title SOA.

There are, however, a set of guiding principles underlying SOA that can be

considered a framework around which discussions on common SOA attributes and

challenges can be based. The distributed nature of services, for example, is a

fundamental attribute of all SOA implementations and as such challenges

associated with that deployment model can be applied to all SOA environments,

regardless of their actual design or implementation.

1. An SOA is comprised of distributed business services and achieves business

value through the reuse of those services.

2. An SOA is based upon industry accepted open standards.

3. An SOA reduces time to market through loose coupling of service interfaces

and its underlying implementation, enabling agility.

4. An SOA is heterogeneous and applications comprise n-tiers that may vary

widely based on the business process activity around which its composite

services are built.

These common attributes result in a common set of challenges that all

organizations face and that must be addressed at some point in the implementation

process. SOA guiding principles suggest that consideration be given to the

architecture of the deployment environment and infrastructure upon which services

will be deployed and delivered before said services are put into production, in parallel

with service definition and development efforts.

Fortunately, most of the challenges associated with deploying SOA are common to

all web-based application deployments. The difference between SOA-based

applications and traditional applications is that these challenges are often faced by

implementers earlier in the application lifecycle due to the challenges associated with

its core technology enabler, XML.

SOA Basics
In most cases, a SOA will be implemented using a variety of standards, the most

common being HTTP, WSDL (Web Services Definition Language), SOAP (Simple

Object Access Protocol), and XML (eXtensible Markup Language).These latter three

standards work together to deliver messages between services much in the same

way as the post office.

WSDL  →   Entry in an address book 
HTTP  →   Postal carrier (transportation)  
SOAP  →   Envelope (encapsulation)  
XML   →   Letter (message) 

If you're sending a letter then it is assumed you already know where to send it. In a

SOA that information comes from the WSDL, which lists the transportation options

(HTTP, FTP, SMTP) available, the possible addressees (remote functions available),

and the format requirements for data sent to each addressee (XML).

The same way an envelope has an address, SOAP carries with it information about

where the message should be delivered and who should open it. In the case of

SOAP and SOA, the addressee is not a who, but a what, as the addressee is really

the name of a remote function that should process the message inside. Just like a

"real" envelope, SOAP has specific formatting requirements and failure to properly

place information in the right place can cause delivery or processing issues.

With this information you can build a message based on the format requirements

(XML-based), put it in an envelope address to the receiver (SOAP), and then drop it

in the mailbox (HTTP) and wait for a response.

If you are the receiver of this message, the message must be delivered to you, you

have to read (parse) the envelope and determine the correct addressee (remote

function). The message then must be passed to the appropriate addressee (remote

function) for processing. Once the correct addressee has the letter, they can then

read (parse) the message and process it according to their designated function.

You'll note that this process requires a lot of reading (parsing) and formatting of

data, from the actual data you want to transfer to the envelope to the transport layer.

It also has the effect of adding two "layers" to the stack that must be processed.

This is one of the challenges associated with SOA—the computational overhead

associated with parsing and processing XML. Current analysis of the impact of XML

parsing and processing on server utilization estimates that approximately 30% of a

server's resources are consumed simply by the parsing and processing of XML. As

a reference point, SSL processing was also estimated to consume 30% of a server's

resources. Unlike SSL, XML currently has no effective server-based solution to

alleviate this burden such as hardware assisted processing, thus the issue of

increasing performance of XML-based services and applications must necessarily lie

outside the server and in the network.

Obviously a single SOAP message does not an SOA make. An SOA can be thought

of as a distributed organization that makes use of the postal service (network) to

deliver messages that assign tasks (remote functions) to individual business units

(services).

There is also nothing that disallows services from being built upon other

technologies. REST (Representational State Transfer) is often used as an example of

an alternative technology upon which an SOA can be built. REST services do not

use SOAP, choosing instead to use the HTTP URI to specify the addressee of the

message and putting the message right into the HTTP body. If SOAP is analogous

to a letter, then REST messages are most like a postcard where the message is not

encapsulated at all.

An SOA can mix and match both technologies, as well as others, though the few

existing best practices documents and SOA consultants are quick to nudge—and

even push—organizations toward standardizing upon one or the other. As many of

the benefits of an SOA including interoperability and platform independence rely on

an open-standards foundation, this push is not necessarily a bad one.

Connection Management
Architecting the distributed services upon which an SOA is built involves the

identification of common business entities and their related functions that can be

encapsulated in a service. A company's inventory, for example, is a common

business entity that is likely shared across all business units. Querying and updating

that inventory are two common functions performed by applications upon the

inventory. Similarly, a customer entity likely exists that is common to all applications

within an organization, with a common set of functions that can be performed on

that customer such as querying, updating, or creating.

In the past these common functions and entities were often duplicated across all

applications needing to apply application-specific logic to them. This necessarily

meant that any changes to those entities resulted in the need to modify every

application which used those entities. This is an inefficient model which leaves open

the very real possibility that differences between applications will occur in the

handling of these entities. These differences are replicated into the data stores,

causing problems between disparate applications needing access to that data to

perform specific tasks. The duplication of function across multiple applications also

has a deleterious effect on the ability of an organization to affect rapid change due to

the time and effort involved in deploying a change to any shared entity.

SOA resolves these issues by removing common entities and their associated

functions and establishing them as an atomic entity of their own (a service) that is

shared by all applications. Changes to the logic or data structure associated with

that entity are now reduced to a single code-set, and assures consistency across

the enterprise.

Traditional Application Design

SOA Application Design

While an SOA certainly improves consistency of application logic and reduces the

time required to introduce a change to business entities or their underlying data

structure, you will note that it has introduced complexity in terms of the number of

connections required.

This increase in connections required can have a negative impact on performance if

services are physically distributed across the network. The overhead associated with

TCP connection management is applied directly to the computational cost of the

application, usually to the detriment the application's overall performance. Also note

that each intermediary (i.e., device or application that touches an XML message)

incurs both TCP session and XML parsing performance penalties. As the number of

services associated with a single application increase, so also does the total

application response time increase.

There are essentially two ways in which ADCs can address this challenge. The first

is based on accepted and proven connection management technologies. By

allowing an ADC to manage the myriad interconnects between services, it can

offload the burden of managing TCP sessions on servers and increase their overall

capacity.

Connection management technology reduces the burden of TCP on servers

The second way in which ADCs address the challenges of distributed services is by

providing a network platform on which shared network services can be hosted.

Many of these functions—security, data scrubbing and transformation,

authentication, and caching are application specific, and therefore network-focused

point solutions can't host these shared services. They can only be supported by an

ADC or on an application platform such as those offered by BEA, IBM, Oracle, and

Microsoft.

By moving applicable network-focused shared services to an ADC, it reduces the

complexity of the SOA by consolidating services into a single network-hosted

platform without sacrificing performance. Hosting shared network services on an

ADC also has the added benefit of alleviating unnecessary parsing of XML from the

services in your SOA. By validating the credentials of an incoming message before it

reaches the service, the service only parses those messages which are authorized

to invoke its operations. This principle applies equally as well to XML and web-

application threat defense measures. Rather than impede performance by

duplicating scans for common threats such as SQL injection, overly large message

sizes, cookie tampering, and XML-specific attacks, it makes sense to provide a

single, shared service through which the message is initially validated and verified as

being free of malicious content.

By verifying the message at the point of ingress, it alleviates the need for each

service to perform that same verification and thus reduces the processing burden

on their respective servers and increasing overall capacity.

Scalability
The high computational cost of parsing and processing XML reduces the overall

capacity of already burdened application servers. The issue with XML arises from its

text-based formatting, which must be parsed and converted into objects that the

application server can understand and manipulate. This process is called

marshalling, and the performance of this process is heavily dependent upon the

complexity of the data. Each element in the data must be created and many

functions called to assign values to its attributes. In most environments this process

is accomplished via serialization, which is treated as a form of I/O within the system.

I/O in general is resource-intensive, requiring a lot of memory and CPU cycles on the

server regardless of platform.

This process occurs twice; once when the message is received to transform the

XML into a machine readable format, and again when the response is transformed

back into XML to be returned.

Because of the drain on resources caused by this process, and any additional

processing required such as connections and queries to databases, application

servers on which services are deployed are rapidly driven to high CPU utilization

states and a dwindling pool of available memory. This reduces the capability of the

application server to process requests in a timely fashion and introduces delay as

the system tries to judiciously process each request by sharing its resources

amongst them.

The effect of heavy load upon application servers is a well-understood problem, with

existing solutions such as ADCs assisting in the horizontal scaling of these servers

to distribute requests. Scaling application servers in an SOA environment becomes

important earlier in the deployment process because of the additional burden placed

on application servers by the parsing and processing of XML.

It is not only the application servers in an SOA environment that are in need of

scalability services. Many organizations have turned to XML gateway appliances

such as those from Reactivity and IBM DataPower to offload the compute heavy

XML processing and to provide additional XML-specific functionality such as WS-

Security, schema validation, virtualization of services, and transformation via XSLT

(eXtensible Stylesheet Language Transformation). These devices are capable of

performing these functions on XML-based messages much more efficiently than an

application server, but lack many of the enterprise-class features required of a

network device such as advanced load balancing algorithms, proven failover

methods, and session management.

In order to scale these devices an ADC is still a necessity. Care should be taken

when considering when the issue of load balancing and XML appliances arises.

While these devices are capable of load balancing services, their implementations

are rudimentary and inflexible in their deployment options. These devices do not

provide the advanced health-checking capabilities of ADCs, and can therefore fail to

properly route traffic as they have no awareness of the state of the application as is

the case with an ADC.

The traditional round-robin or least-connection algorithms used by both XML

appliances and application server clustering capabilities fail to recognize the

resource intensive nature of XML and are therefore incapable of truly distributing

requests within a pool or cluster of servers in the most efficient manner. The

capability of an application server to handle the load of SOA messages is dependent

not only on the number of requests it is currently attempting to handle, but on the

resources currently available. This means that advanced algorithms and capabilities

are required to determine the current state of the application and the server, which is

one of the domains of expertise of ADCs. A server may have only one connection or

be "next" in line to receive a request, but if it is currently parsing and processing a

very large XML message it may not have the memory or CPU cycles to process

another message and still meet SLA goals for both messages.

Security
XML is text-based and therefore human-readable. It is also web-based and hosted

on the same application infrastructure as "traditional" web-based applications,

making it subject to traditional web attacks.

Many of the same vulnerabilities that have plagued web-based applications are

applicable to XML-based applications. SQL injection is a common method of

attempting to extract unauthorized information from corporate databases or to

wreak general havoc by deleting important data. SQL injection can be as easily

accomplished through an XML message as it is a traditional HTTP GET or POST

formatted message.

Because this type of attack is well-understood by existing solutions designed to

protect web-applications, these same solutions provide a measure of security for

XML-based applications. So, too, can other security techniques such as signature

scanning mechanisms that seek to discover hidden viruses within web-borne

messages.

While it is always preferred that developers produce secure code, the reality is that if

they responded in code to every threat that they would spend most of their time

coding protection against new attacks, testing those solutions and then deploying

them, only to start again the next day. Additionally, such security-in-code

techniques require duplication of code throughout an application, which can

negatively impact performance and increases the possibility of other errors being

introduced into the code. The duplication of code is an anathema to the guiding

principles of SOA, which seeks to reduce the costs and time to market for software

solutions through the identification of such shared services.

By employing an application firewall to mitigate the risks associated with SOA and

distributed service environments, the principles of an SOA are upheld while

protecting applications from these types of well-understood threats. Moving as

much application security to the point of ingress has the added benefit of improving

performance, as messages that are clearly malicious never reach the application

server, thus reducing the burden on application infrastructure.

Bandwidth
A concern of many regarding XML is the increased size of messages flowing

between systems. Indeed, the SOAP envelope used by web services to carry the

XML messages itself adds a minimum of 256 bytes to every message, though

usually the increase is much higher.

The verbose nature of XML means that even the smallest of messages will become

approximately twice as large as the same message formatting as HTTP POST/GET

name-value pairs. When these messages are being transferred between servers in

the data center this increase oft has a negligible effect on bandwidth and transfer

times, owing to the fat nature of data center backbones. But with increased use of

Asynchronous JavaScript and XML (AJAX) as the basis for user-interfaces that

interact with SOA-based back end systems, it is important to consider the effect of

these increasingly large messages on delivery times to the client.

In addition to the potential use of AJAX clients to access SOA services, there is the

very real possibility that external partners and customers may be accessing services

via the public Internet, over an uncontrollable and often unpredictable public

network. In any case in which clients are accessing services via a public network

there is the possibility that a disparity exists between the client's ability to receive

responses as quickly as the server can send them. This has the effect of forcing

servers to segment data into small chunks that the client can easily consume, but

increases the total time required to deliver the content.

This ties up the application and web server, reducing the total number of clients it

can serve at any given time. Application delivery controllers address this issue by

employing a technique often called "content spooling." Content spooling allows an

ADC to mediate between the client and server and allows the server to send content

as fast as possible to the mediating device. The ADC then takes on the

responsibility of spoon-feeding that content to the client, allowing the application or

web server to handle more requests.

Another challenge arising from the use of XML to transport data is, however, that

messages are all too often exceedingly fat. Message sizes in the 100's of kilobytes

are not uncommon, with messages reaching into the gigabytes in size less

common, but not unheard of.

As with the challenges related to the size of HTML and other text-based message

formats, the issues associated with the size of messages are easily addressed by

the right solution. A number of acceleration technologies exist today that are

capable of employing a number of compression techniques to reduce the overall

size of messages, thereby decreasing the time to transfer between server and client.

Industry standard compression technologies, stripping of white space, and other

data reduction technologies exist solely to respond to this challenge and reduce the

impact of large messages on the application infrastructure and delivery network.

Application acceleration-specific products as well as many of the features

associated with ADCs can provide many of these capabilities, as well as advanced

mechanisms for assisting with issues only found in browser-based applications

such as artificially imposed connection limitations that inhibit AJAX and browser-

based XML technologies from performing at full capacity. Dynamic content caching

is as applicable to XML as it is to HTML and related text-based formats, and can

increase the performance and capacity of SOA-based deployments dramatically.

WAN optimization controllers, as well, can provide additional improvements in

remote-office scenarios by taking advantage of symmetric data reduction

capabilities.

Conclusion
Many of the challenges associated with SOA deployments are the same challenges

we've encountered when deploying traditional web-based applications. The

underlying causes of these challenges may differ in a SOA, but the solutions to

address those challenges remain the same. The key to addressing SOA-related

challenges is to identify them as early as possible and include the appropriate

solution in the architecture to reduce the possibility of re-architecture being required

in a post-deployment environment.

Chal lenge Impact ADC Solut ion Benefit

Exponential
increase in
connections

Overhead of TCP connection
management adds to burden on servers
Additional hops add additional latency

Connection management
Hosting shared services

Reduces number of
servers required,
lowering costs
Reduces complexity and
time to manage
Maintains availability and
increases performance
Reduces requirement for
duplication of
functionality in deployed
services

XML
Message
size

More bandwidth consumed
More resources consumed to
parse/process messages

Content spooling
Compression
Caching
Hosting shared services
QoS

Increases capacity of
servers, reducing costs
and increasing
operational efficiency
Mitigates risk of attack
Prioritizes messages to
ensure SLA compliance

Scalability XML parsing is compute intensive and
requires horizontally scalable
infrastructure
XML appliances that offload XML
specific duties do not support
persistence, failover, or advanced load
balancing capabilities

ADCs support
persistence, advanced
load balancing capabilities
and failover scenarios

Maintains availability of
services
Increases performance
Protects investments in
technology by ensuring
horizontal scalability
Supports necessary
capabilities lacking in
other solutions

Security Exploitation of vulnerabilities in
application infrastructure
Theft of sensitive data

Application firewall
capabilities
Content scrubbing
Data validation

Prevents attacks from
reaching application
infrastructure
Improves performance of
application infrastructure
by reducing duplication
of code

WHITE PAPER

SOA: Challenges and Solutions
®

10

WHITE PAPER

SOA: Challenges and Solutions
®



•

•

•
•

•

•

•

•

•
•

•
•
•
•
•

•

•
•

•

•

• •

•
•

•

•

•

•

•
•

•

•

Overview
The benefits of SOA (Service-Oriented Architecture) have been well documented,

but the challenges associated with an enterprise wide SOA deployment have not.

While the distributed nature of a SOA encourages reuse and provides a high level of

agility for the business, it can also give rise to real challenges in the delivery of SOA-

based applications.

XML is the core technology enabler of SOA-based applications. Its verbose nature,

inherent lack of security, and the increase in connections between applications and

services required result in a number of challenges that are well-understood, and that

have proven solutions.

Challenge
The challenge in delivering SOA-based applications lies in identifying where potential

problems will arise and addressing them as early in the deployment cycle as

possible. Application delivery controllers are well suited to addressing both the well-

understood and unanticipated issues associated with delivering SOA-based

applications. Incorporating an application delivery controller (ADC) into the

deployment plans for your SOA can prevent unnecessary delays and even the need

to re-architect portions of your SOA infrastructure—saving man hours, expense,

and headaches.

Solution
SOA is both an architectural design pattern and a deployment methodology. That's

a nice way of saying that no one can define what any particular SOA implementation

should look like. While there have been attempts by various vendors in a number of

vertical SOA markets to create best practices for SOA environments, these have

largely failed due to the rather dynamic and organizational-specific nature of SOA

implementations. Because the services that comprise an SOA are business-focused

and encapsulate business specific entities, there is no single agreed upon definition

of what must exist and how components are deployed in order to bear the title SOA.

There are, however, a set of guiding principles underlying SOA that can be

considered a framework around which discussions on common SOA attributes and

challenges can be based. The distributed nature of services, for example, is a

fundamental attribute of all SOA implementations and as such challenges

associated with that deployment model can be applied to all SOA environments,

regardless of their actual design or implementation.

1. An SOA is comprised of distributed business services and achieves business

value through the reuse of those services.

2. An SOA is based upon industry accepted open standards.

3. An SOA reduces time to market through loose coupling of service interfaces

and its underlying implementation, enabling agility.

4. An SOA is heterogeneous and applications comprise n-tiers that may vary

widely based on the business process activity around which its composite

services are built.

These common attributes result in a common set of challenges that all

organizations face and that must be addressed at some point in the implementation

process. SOA guiding principles suggest that consideration be given to the

architecture of the deployment environment and infrastructure upon which services

will be deployed and delivered before said services are put into production, in parallel

with service definition and development efforts.

Fortunately, most of the challenges associated with deploying SOA are common to

all web-based application deployments. The difference between SOA-based

applications and traditional applications is that these challenges are often faced by

implementers earlier in the application lifecycle due to the challenges associated with

its core technology enabler, XML.

SOA Basics
In most cases, a SOA will be implemented using a variety of standards, the most

common being HTTP, WSDL (Web Services Definition Language), SOAP (Simple

Object Access Protocol), and XML (eXtensible Markup Language).These latter three

standards work together to deliver messages between services much in the same

way as the post office.

WSDL  →   Entry in an address book 
HTTP  →   Postal carrier (transportation)  
SOAP  →   Envelope (encapsulation)  
XML   →   Letter (message) 

If you're sending a letter then it is assumed you already know where to send it. In a

SOA that information comes from the WSDL, which lists the transportation options

(HTTP, FTP, SMTP) available, the possible addressees (remote functions available),

and the format requirements for data sent to each addressee (XML).

The same way an envelope has an address, SOAP carries with it information about

where the message should be delivered and who should open it. In the case of

SOAP and SOA, the addressee is not a who, but a what, as the addressee is really

the name of a remote function that should process the message inside. Just like a

"real" envelope, SOAP has specific formatting requirements and failure to properly

place information in the right place can cause delivery or processing issues.

With this information you can build a message based on the format requirements

(XML-based), put it in an envelope address to the receiver (SOAP), and then drop it

in the mailbox (HTTP) and wait for a response.

If you are the receiver of this message, the message must be delivered to you, you

have to read (parse) the envelope and determine the correct addressee (remote

function). The message then must be passed to the appropriate addressee (remote

function) for processing. Once the correct addressee has the letter, they can then

read (parse) the message and process it according to their designated function.

You'll note that this process requires a lot of reading (parsing) and formatting of

data, from the actual data you want to transfer to the envelope to the transport layer.

It also has the effect of adding two "layers" to the stack that must be processed.

This is one of the challenges associated with SOA—the computational overhead

associated with parsing and processing XML. Current analysis of the impact of XML

parsing and processing on server utilization estimates that approximately 30% of a

server's resources are consumed simply by the parsing and processing of XML. As

a reference point, SSL processing was also estimated to consume 30% of a server's

resources. Unlike SSL, XML currently has no effective server-based solution to

alleviate this burden such as hardware assisted processing, thus the issue of

increasing performance of XML-based services and applications must necessarily lie

outside the server and in the network.

Obviously a single SOAP message does not an SOA make. An SOA can be thought

of as a distributed organization that makes use of the postal service (network) to

deliver messages that assign tasks (remote functions) to individual business units

(services).

There is also nothing that disallows services from being built upon other

technologies. REST (Representational State Transfer) is often used as an example of

an alternative technology upon which an SOA can be built. REST services do not

use SOAP, choosing instead to use the HTTP URI to specify the addressee of the

message and putting the message right into the HTTP body. If SOAP is analogous

to a letter, then REST messages are most like a postcard where the message is not

encapsulated at all.

An SOA can mix and match both technologies, as well as others, though the few

existing best practices documents and SOA consultants are quick to nudge—and

even push—organizations toward standardizing upon one or the other. As many of

the benefits of an SOA including interoperability and platform independence rely on

an open-standards foundation, this push is not necessarily a bad one.

Connection Management
Architecting the distributed services upon which an SOA is built involves the

identification of common business entities and their related functions that can be

encapsulated in a service. A company's inventory, for example, is a common

business entity that is likely shared across all business units. Querying and updating

that inventory are two common functions performed by applications upon the

inventory. Similarly, a customer entity likely exists that is common to all applications

within an organization, with a common set of functions that can be performed on

that customer such as querying, updating, or creating.

In the past these common functions and entities were often duplicated across all

applications needing to apply application-specific logic to them. This necessarily

meant that any changes to those entities resulted in the need to modify every

application which used those entities. This is an inefficient model which leaves open

the very real possibility that differences between applications will occur in the

handling of these entities. These differences are replicated into the data stores,

causing problems between disparate applications needing access to that data to

perform specific tasks. The duplication of function across multiple applications also

has a deleterious effect on the ability of an organization to affect rapid change due to

the time and effort involved in deploying a change to any shared entity.

SOA resolves these issues by removing common entities and their associated

functions and establishing them as an atomic entity of their own (a service) that is

shared by all applications. Changes to the logic or data structure associated with

that entity are now reduced to a single code-set, and assures consistency across

the enterprise.

Traditional Application Design

SOA Application Design

While an SOA certainly improves consistency of application logic and reduces the

time required to introduce a change to business entities or their underlying data

structure, you will note that it has introduced complexity in terms of the number of

connections required.

This increase in connections required can have a negative impact on performance if

services are physically distributed across the network. The overhead associated with

TCP connection management is applied directly to the computational cost of the

application, usually to the detriment the application's overall performance. Also note

that each intermediary (i.e., device or application that touches an XML message)

incurs both TCP session and XML parsing performance penalties. As the number of

services associated with a single application increase, so also does the total

application response time increase.

There are essentially two ways in which ADCs can address this challenge. The first

is based on accepted and proven connection management technologies. By

allowing an ADC to manage the myriad interconnects between services, it can

offload the burden of managing TCP sessions on servers and increase their overall

capacity.

Connection management technology reduces the burden of TCP on servers

The second way in which ADCs address the challenges of distributed services is by

providing a network platform on which shared network services can be hosted.

Many of these functions—security, data scrubbing and transformation,

authentication, and caching are application specific, and therefore network-focused

point solutions can't host these shared services. They can only be supported by an

ADC or on an application platform such as those offered by BEA, IBM, Oracle, and

Microsoft.

By moving applicable network-focused shared services to an ADC, it reduces the

complexity of the SOA by consolidating services into a single network-hosted

platform without sacrificing performance. Hosting shared network services on an

ADC also has the added benefit of alleviating unnecessary parsing of XML from the

services in your SOA. By validating the credentials of an incoming message before it

reaches the service, the service only parses those messages which are authorized

to invoke its operations. This principle applies equally as well to XML and web-

application threat defense measures. Rather than impede performance by

duplicating scans for common threats such as SQL injection, overly large message

sizes, cookie tampering, and XML-specific attacks, it makes sense to provide a

single, shared service through which the message is initially validated and verified as

being free of malicious content.

By verifying the message at the point of ingress, it alleviates the need for each

service to perform that same verification and thus reduces the processing burden

on their respective servers and increasing overall capacity.

Scalability
The high computational cost of parsing and processing XML reduces the overall

capacity of already burdened application servers. The issue with XML arises from its

text-based formatting, which must be parsed and converted into objects that the

application server can understand and manipulate. This process is called

marshalling, and the performance of this process is heavily dependent upon the

complexity of the data. Each element in the data must be created and many

functions called to assign values to its attributes. In most environments this process

is accomplished via serialization, which is treated as a form of I/O within the system.

I/O in general is resource-intensive, requiring a lot of memory and CPU cycles on the

server regardless of platform.

This process occurs twice; once when the message is received to transform the

XML into a machine readable format, and again when the response is transformed

back into XML to be returned.

Because of the drain on resources caused by this process, and any additional

processing required such as connections and queries to databases, application

servers on which services are deployed are rapidly driven to high CPU utilization

states and a dwindling pool of available memory. This reduces the capability of the

application server to process requests in a timely fashion and introduces delay as

the system tries to judiciously process each request by sharing its resources

amongst them.

The effect of heavy load upon application servers is a well-understood problem, with

existing solutions such as ADCs assisting in the horizontal scaling of these servers

to distribute requests. Scaling application servers in an SOA environment becomes

important earlier in the deployment process because of the additional burden placed

on application servers by the parsing and processing of XML.

It is not only the application servers in an SOA environment that are in need of

scalability services. Many organizations have turned to XML gateway appliances

such as those from Reactivity and IBM DataPower to offload the compute heavy

XML processing and to provide additional XML-specific functionality such as WS-

Security, schema validation, virtualization of services, and transformation via XSLT

(eXtensible Stylesheet Language Transformation). These devices are capable of

performing these functions on XML-based messages much more efficiently than an

application server, but lack many of the enterprise-class features required of a

network device such as advanced load balancing algorithms, proven failover

methods, and session management.

In order to scale these devices an ADC is still a necessity. Care should be taken

when considering when the issue of load balancing and XML appliances arises.

While these devices are capable of load balancing services, their implementations

are rudimentary and inflexible in their deployment options. These devices do not

provide the advanced health-checking capabilities of ADCs, and can therefore fail to

properly route traffic as they have no awareness of the state of the application as is

the case with an ADC.

The traditional round-robin or least-connection algorithms used by both XML

appliances and application server clustering capabilities fail to recognize the

resource intensive nature of XML and are therefore incapable of truly distributing

requests within a pool or cluster of servers in the most efficient manner. The

capability of an application server to handle the load of SOA messages is dependent

not only on the number of requests it is currently attempting to handle, but on the

resources currently available. This means that advanced algorithms and capabilities

are required to determine the current state of the application and the server, which is

one of the domains of expertise of ADCs. A server may have only one connection or

be "next" in line to receive a request, but if it is currently parsing and processing a

very large XML message it may not have the memory or CPU cycles to process

another message and still meet SLA goals for both messages.

Security
XML is text-based and therefore human-readable. It is also web-based and hosted

on the same application infrastructure as "traditional" web-based applications,

making it subject to traditional web attacks.

Many of the same vulnerabilities that have plagued web-based applications are

applicable to XML-based applications. SQL injection is a common method of

attempting to extract unauthorized information from corporate databases or to

wreak general havoc by deleting important data. SQL injection can be as easily

accomplished through an XML message as it is a traditional HTTP GET or POST

formatted message.

Because this type of attack is well-understood by existing solutions designed to

protect web-applications, these same solutions provide a measure of security for

XML-based applications. So, too, can other security techniques such as signature

scanning mechanisms that seek to discover hidden viruses within web-borne

messages.

While it is always preferred that developers produce secure code, the reality is that if

they responded in code to every threat that they would spend most of their time

coding protection against new attacks, testing those solutions and then deploying

them, only to start again the next day. Additionally, such security-in-code

techniques require duplication of code throughout an application, which can

negatively impact performance and increases the possibility of other errors being

introduced into the code. The duplication of code is an anathema to the guiding

principles of SOA, which seeks to reduce the costs and time to market for software

solutions through the identification of such shared services.

By employing an application firewall to mitigate the risks associated with SOA and

distributed service environments, the principles of an SOA are upheld while

protecting applications from these types of well-understood threats. Moving as

much application security to the point of ingress has the added benefit of improving

performance, as messages that are clearly malicious never reach the application

server, thus reducing the burden on application infrastructure.

Bandwidth
A concern of many regarding XML is the increased size of messages flowing

between systems. Indeed, the SOAP envelope used by web services to carry the

XML messages itself adds a minimum of 256 bytes to every message, though

usually the increase is much higher.

The verbose nature of XML means that even the smallest of messages will become

approximately twice as large as the same message formatting as HTTP POST/GET

name-value pairs. When these messages are being transferred between servers in

the data center this increase oft has a negligible effect on bandwidth and transfer

times, owing to the fat nature of data center backbones. But with increased use of

Asynchronous JavaScript and XML (AJAX) as the basis for user-interfaces that

interact with SOA-based back end systems, it is important to consider the effect of

these increasingly large messages on delivery times to the client.

In addition to the potential use of AJAX clients to access SOA services, there is the

very real possibility that external partners and customers may be accessing services

via the public Internet, over an uncontrollable and often unpredictable public

network. In any case in which clients are accessing services via a public network

there is the possibility that a disparity exists between the client's ability to receive

responses as quickly as the server can send them. This has the effect of forcing

servers to segment data into small chunks that the client can easily consume, but

increases the total time required to deliver the content.

This ties up the application and web server, reducing the total number of clients it

can serve at any given time. Application delivery controllers address this issue by

employing a technique often called "content spooling." Content spooling allows an

ADC to mediate between the client and server and allows the server to send content

as fast as possible to the mediating device. The ADC then takes on the

responsibility of spoon-feeding that content to the client, allowing the application or

web server to handle more requests.

Another challenge arising from the use of XML to transport data is, however, that

messages are all too often exceedingly fat. Message sizes in the 100's of kilobytes

are not uncommon, with messages reaching into the gigabytes in size less

common, but not unheard of.

As with the challenges related to the size of HTML and other text-based message

formats, the issues associated with the size of messages are easily addressed by

the right solution. A number of acceleration technologies exist today that are

capable of employing a number of compression techniques to reduce the overall

size of messages, thereby decreasing the time to transfer between server and client.

Industry standard compression technologies, stripping of white space, and other

data reduction technologies exist solely to respond to this challenge and reduce the

impact of large messages on the application infrastructure and delivery network.

Application acceleration-specific products as well as many of the features

associated with ADCs can provide many of these capabilities, as well as advanced

mechanisms for assisting with issues only found in browser-based applications

such as artificially imposed connection limitations that inhibit AJAX and browser-

based XML technologies from performing at full capacity. Dynamic content caching

is as applicable to XML as it is to HTML and related text-based formats, and can

increase the performance and capacity of SOA-based deployments dramatically.

WAN optimization controllers, as well, can provide additional improvements in

remote-office scenarios by taking advantage of symmetric data reduction

capabilities.

Conclusion
Many of the challenges associated with SOA deployments are the same challenges

we've encountered when deploying traditional web-based applications. The

underlying causes of these challenges may differ in a SOA, but the solutions to

address those challenges remain the same. The key to addressing SOA-related

challenges is to identify them as early as possible and include the appropriate

solution in the architecture to reduce the possibility of re-architecture being required

in a post-deployment environment.

Chal lenge Impact ADC Solut ion Benefit

Exponential
increase in
connections

Overhead of TCP connection
management adds to burden on servers
Additional hops add additional latency

Connection management
Hosting shared services

Reduces number of
servers required,
lowering costs
Reduces complexity and
time to manage
Maintains availability and
increases performance
Reduces requirement for
duplication of
functionality in deployed
services

XML
Message
size

More bandwidth consumed
More resources consumed to
parse/process messages

Content spooling
Compression
Caching
Hosting shared services
QoS

Increases capacity of
servers, reducing costs
and increasing
operational efficiency
Mitigates risk of attack
Prioritizes messages to
ensure SLA compliance

Scalability XML parsing is compute intensive and
requires horizontally scalable
infrastructure
XML appliances that offload XML
specific duties do not support
persistence, failover, or advanced load
balancing capabilities

ADCs support
persistence, advanced
load balancing capabilities
and failover scenarios

Maintains availability of
services
Increases performance
Protects investments in
technology by ensuring
horizontal scalability
Supports necessary
capabilities lacking in
other solutions

Security Exploitation of vulnerabilities in
application infrastructure
Theft of sensitive data

Application firewall
capabilities
Content scrubbing
Data validation

Prevents attacks from
reaching application
infrastructure
Improves performance of
application infrastructure
by reducing duplication
of code

WHITE PAPER

SOA: Challenges and Solutions
®

11

WHITE PAPER

SOA: Challenges and Solutions
®

https://f5.com/Portals/1/Images/whitepaper-images/SOA Challenges and Solutions/fig-6.png


•

•

•
•

•

•

•

•

•
•

•
•
•
•
•

•

•
•

•

•

• •

•
•

•

•

•

•

•
•

•

•

Overview
The benefits of SOA (Service-Oriented Architecture) have been well documented,

but the challenges associated with an enterprise wide SOA deployment have not.

While the distributed nature of a SOA encourages reuse and provides a high level of

agility for the business, it can also give rise to real challenges in the delivery of SOA-

based applications.

XML is the core technology enabler of SOA-based applications. Its verbose nature,

inherent lack of security, and the increase in connections between applications and

services required result in a number of challenges that are well-understood, and that

have proven solutions.

Challenge
The challenge in delivering SOA-based applications lies in identifying where potential

problems will arise and addressing them as early in the deployment cycle as

possible. Application delivery controllers are well suited to addressing both the well-

understood and unanticipated issues associated with delivering SOA-based

applications. Incorporating an application delivery controller (ADC) into the

deployment plans for your SOA can prevent unnecessary delays and even the need

to re-architect portions of your SOA infrastructure—saving man hours, expense,

and headaches.

Solution
SOA is both an architectural design pattern and a deployment methodology. That's

a nice way of saying that no one can define what any particular SOA implementation

should look like. While there have been attempts by various vendors in a number of

vertical SOA markets to create best practices for SOA environments, these have

largely failed due to the rather dynamic and organizational-specific nature of SOA

implementations. Because the services that comprise an SOA are business-focused

and encapsulate business specific entities, there is no single agreed upon definition

of what must exist and how components are deployed in order to bear the title SOA.

There are, however, a set of guiding principles underlying SOA that can be

considered a framework around which discussions on common SOA attributes and

challenges can be based. The distributed nature of services, for example, is a

fundamental attribute of all SOA implementations and as such challenges

associated with that deployment model can be applied to all SOA environments,

regardless of their actual design or implementation.

1. An SOA is comprised of distributed business services and achieves business

value through the reuse of those services.

2. An SOA is based upon industry accepted open standards.

3. An SOA reduces time to market through loose coupling of service interfaces

and its underlying implementation, enabling agility.

4. An SOA is heterogeneous and applications comprise n-tiers that may vary

widely based on the business process activity around which its composite

services are built.

These common attributes result in a common set of challenges that all

organizations face and that must be addressed at some point in the implementation

process. SOA guiding principles suggest that consideration be given to the

architecture of the deployment environment and infrastructure upon which services

will be deployed and delivered before said services are put into production, in parallel

with service definition and development efforts.

Fortunately, most of the challenges associated with deploying SOA are common to

all web-based application deployments. The difference between SOA-based

applications and traditional applications is that these challenges are often faced by

implementers earlier in the application lifecycle due to the challenges associated with

its core technology enabler, XML.

SOA Basics
In most cases, a SOA will be implemented using a variety of standards, the most

common being HTTP, WSDL (Web Services Definition Language), SOAP (Simple

Object Access Protocol), and XML (eXtensible Markup Language).These latter three

standards work together to deliver messages between services much in the same

way as the post office.

WSDL  →   Entry in an address book 
HTTP  →   Postal carrier (transportation)  
SOAP  →   Envelope (encapsulation)  
XML   →   Letter (message) 

If you're sending a letter then it is assumed you already know where to send it. In a

SOA that information comes from the WSDL, which lists the transportation options

(HTTP, FTP, SMTP) available, the possible addressees (remote functions available),

and the format requirements for data sent to each addressee (XML).

The same way an envelope has an address, SOAP carries with it information about

where the message should be delivered and who should open it. In the case of

SOAP and SOA, the addressee is not a who, but a what, as the addressee is really

the name of a remote function that should process the message inside. Just like a

"real" envelope, SOAP has specific formatting requirements and failure to properly

place information in the right place can cause delivery or processing issues.

With this information you can build a message based on the format requirements

(XML-based), put it in an envelope address to the receiver (SOAP), and then drop it

in the mailbox (HTTP) and wait for a response.

If you are the receiver of this message, the message must be delivered to you, you

have to read (parse) the envelope and determine the correct addressee (remote

function). The message then must be passed to the appropriate addressee (remote

function) for processing. Once the correct addressee has the letter, they can then

read (parse) the message and process it according to their designated function.

You'll note that this process requires a lot of reading (parsing) and formatting of

data, from the actual data you want to transfer to the envelope to the transport layer.

It also has the effect of adding two "layers" to the stack that must be processed.

This is one of the challenges associated with SOA—the computational overhead

associated with parsing and processing XML. Current analysis of the impact of XML

parsing and processing on server utilization estimates that approximately 30% of a

server's resources are consumed simply by the parsing and processing of XML. As

a reference point, SSL processing was also estimated to consume 30% of a server's

resources. Unlike SSL, XML currently has no effective server-based solution to

alleviate this burden such as hardware assisted processing, thus the issue of

increasing performance of XML-based services and applications must necessarily lie

outside the server and in the network.

Obviously a single SOAP message does not an SOA make. An SOA can be thought

of as a distributed organization that makes use of the postal service (network) to

deliver messages that assign tasks (remote functions) to individual business units

(services).

There is also nothing that disallows services from being built upon other

technologies. REST (Representational State Transfer) is often used as an example of

an alternative technology upon which an SOA can be built. REST services do not

use SOAP, choosing instead to use the HTTP URI to specify the addressee of the

message and putting the message right into the HTTP body. If SOAP is analogous

to a letter, then REST messages are most like a postcard where the message is not

encapsulated at all.

An SOA can mix and match both technologies, as well as others, though the few

existing best practices documents and SOA consultants are quick to nudge—and

even push—organizations toward standardizing upon one or the other. As many of

the benefits of an SOA including interoperability and platform independence rely on

an open-standards foundation, this push is not necessarily a bad one.

Connection Management
Architecting the distributed services upon which an SOA is built involves the

identification of common business entities and their related functions that can be

encapsulated in a service. A company's inventory, for example, is a common

business entity that is likely shared across all business units. Querying and updating

that inventory are two common functions performed by applications upon the

inventory. Similarly, a customer entity likely exists that is common to all applications

within an organization, with a common set of functions that can be performed on

that customer such as querying, updating, or creating.

In the past these common functions and entities were often duplicated across all

applications needing to apply application-specific logic to them. This necessarily

meant that any changes to those entities resulted in the need to modify every

application which used those entities. This is an inefficient model which leaves open

the very real possibility that differences between applications will occur in the

handling of these entities. These differences are replicated into the data stores,

causing problems between disparate applications needing access to that data to

perform specific tasks. The duplication of function across multiple applications also

has a deleterious effect on the ability of an organization to affect rapid change due to

the time and effort involved in deploying a change to any shared entity.

SOA resolves these issues by removing common entities and their associated

functions and establishing them as an atomic entity of their own (a service) that is

shared by all applications. Changes to the logic or data structure associated with

that entity are now reduced to a single code-set, and assures consistency across

the enterprise.

Traditional Application Design

SOA Application Design

While an SOA certainly improves consistency of application logic and reduces the

time required to introduce a change to business entities or their underlying data

structure, you will note that it has introduced complexity in terms of the number of

connections required.

This increase in connections required can have a negative impact on performance if

services are physically distributed across the network. The overhead associated with

TCP connection management is applied directly to the computational cost of the

application, usually to the detriment the application's overall performance. Also note

that each intermediary (i.e., device or application that touches an XML message)

incurs both TCP session and XML parsing performance penalties. As the number of

services associated with a single application increase, so also does the total

application response time increase.

There are essentially two ways in which ADCs can address this challenge. The first

is based on accepted and proven connection management technologies. By

allowing an ADC to manage the myriad interconnects between services, it can

offload the burden of managing TCP sessions on servers and increase their overall

capacity.

Connection management technology reduces the burden of TCP on servers

The second way in which ADCs address the challenges of distributed services is by

providing a network platform on which shared network services can be hosted.

Many of these functions—security, data scrubbing and transformation,

authentication, and caching are application specific, and therefore network-focused

point solutions can't host these shared services. They can only be supported by an

ADC or on an application platform such as those offered by BEA, IBM, Oracle, and

Microsoft.

By moving applicable network-focused shared services to an ADC, it reduces the

complexity of the SOA by consolidating services into a single network-hosted

platform without sacrificing performance. Hosting shared network services on an

ADC also has the added benefit of alleviating unnecessary parsing of XML from the

services in your SOA. By validating the credentials of an incoming message before it

reaches the service, the service only parses those messages which are authorized

to invoke its operations. This principle applies equally as well to XML and web-

application threat defense measures. Rather than impede performance by

duplicating scans for common threats such as SQL injection, overly large message

sizes, cookie tampering, and XML-specific attacks, it makes sense to provide a

single, shared service through which the message is initially validated and verified as

being free of malicious content.

By verifying the message at the point of ingress, it alleviates the need for each

service to perform that same verification and thus reduces the processing burden

on their respective servers and increasing overall capacity.

Scalability
The high computational cost of parsing and processing XML reduces the overall

capacity of already burdened application servers. The issue with XML arises from its

text-based formatting, which must be parsed and converted into objects that the

application server can understand and manipulate. This process is called

marshalling, and the performance of this process is heavily dependent upon the

complexity of the data. Each element in the data must be created and many

functions called to assign values to its attributes. In most environments this process

is accomplished via serialization, which is treated as a form of I/O within the system.

I/O in general is resource-intensive, requiring a lot of memory and CPU cycles on the

server regardless of platform.

This process occurs twice; once when the message is received to transform the

XML into a machine readable format, and again when the response is transformed

back into XML to be returned.

Because of the drain on resources caused by this process, and any additional

processing required such as connections and queries to databases, application

servers on which services are deployed are rapidly driven to high CPU utilization

states and a dwindling pool of available memory. This reduces the capability of the

application server to process requests in a timely fashion and introduces delay as

the system tries to judiciously process each request by sharing its resources

amongst them.

The effect of heavy load upon application servers is a well-understood problem, with

existing solutions such as ADCs assisting in the horizontal scaling of these servers

to distribute requests. Scaling application servers in an SOA environment becomes

important earlier in the deployment process because of the additional burden placed

on application servers by the parsing and processing of XML.

It is not only the application servers in an SOA environment that are in need of

scalability services. Many organizations have turned to XML gateway appliances

such as those from Reactivity and IBM DataPower to offload the compute heavy

XML processing and to provide additional XML-specific functionality such as WS-

Security, schema validation, virtualization of services, and transformation via XSLT

(eXtensible Stylesheet Language Transformation). These devices are capable of

performing these functions on XML-based messages much more efficiently than an

application server, but lack many of the enterprise-class features required of a

network device such as advanced load balancing algorithms, proven failover

methods, and session management.

In order to scale these devices an ADC is still a necessity. Care should be taken

when considering when the issue of load balancing and XML appliances arises.

While these devices are capable of load balancing services, their implementations

are rudimentary and inflexible in their deployment options. These devices do not

provide the advanced health-checking capabilities of ADCs, and can therefore fail to

properly route traffic as they have no awareness of the state of the application as is

the case with an ADC.

The traditional round-robin or least-connection algorithms used by both XML

appliances and application server clustering capabilities fail to recognize the

resource intensive nature of XML and are therefore incapable of truly distributing

requests within a pool or cluster of servers in the most efficient manner. The

capability of an application server to handle the load of SOA messages is dependent

not only on the number of requests it is currently attempting to handle, but on the

resources currently available. This means that advanced algorithms and capabilities

are required to determine the current state of the application and the server, which is

one of the domains of expertise of ADCs. A server may have only one connection or

be "next" in line to receive a request, but if it is currently parsing and processing a

very large XML message it may not have the memory or CPU cycles to process

another message and still meet SLA goals for both messages.

Security
XML is text-based and therefore human-readable. It is also web-based and hosted

on the same application infrastructure as "traditional" web-based applications,

making it subject to traditional web attacks.

Many of the same vulnerabilities that have plagued web-based applications are

applicable to XML-based applications. SQL injection is a common method of

attempting to extract unauthorized information from corporate databases or to

wreak general havoc by deleting important data. SQL injection can be as easily

accomplished through an XML message as it is a traditional HTTP GET or POST

formatted message.

Because this type of attack is well-understood by existing solutions designed to

protect web-applications, these same solutions provide a measure of security for

XML-based applications. So, too, can other security techniques such as signature

scanning mechanisms that seek to discover hidden viruses within web-borne

messages.

While it is always preferred that developers produce secure code, the reality is that if

they responded in code to every threat that they would spend most of their time

coding protection against new attacks, testing those solutions and then deploying

them, only to start again the next day. Additionally, such security-in-code

techniques require duplication of code throughout an application, which can

negatively impact performance and increases the possibility of other errors being

introduced into the code. The duplication of code is an anathema to the guiding

principles of SOA, which seeks to reduce the costs and time to market for software

solutions through the identification of such shared services.

By employing an application firewall to mitigate the risks associated with SOA and

distributed service environments, the principles of an SOA are upheld while

protecting applications from these types of well-understood threats. Moving as

much application security to the point of ingress has the added benefit of improving

performance, as messages that are clearly malicious never reach the application

server, thus reducing the burden on application infrastructure.

Bandwidth
A concern of many regarding XML is the increased size of messages flowing

between systems. Indeed, the SOAP envelope used by web services to carry the

XML messages itself adds a minimum of 256 bytes to every message, though

usually the increase is much higher.

The verbose nature of XML means that even the smallest of messages will become

approximately twice as large as the same message formatting as HTTP POST/GET

name-value pairs. When these messages are being transferred between servers in

the data center this increase oft has a negligible effect on bandwidth and transfer

times, owing to the fat nature of data center backbones. But with increased use of

Asynchronous JavaScript and XML (AJAX) as the basis for user-interfaces that

interact with SOA-based back end systems, it is important to consider the effect of

these increasingly large messages on delivery times to the client.

In addition to the potential use of AJAX clients to access SOA services, there is the

very real possibility that external partners and customers may be accessing services

via the public Internet, over an uncontrollable and often unpredictable public

network. In any case in which clients are accessing services via a public network

there is the possibility that a disparity exists between the client's ability to receive

responses as quickly as the server can send them. This has the effect of forcing

servers to segment data into small chunks that the client can easily consume, but

increases the total time required to deliver the content.

This ties up the application and web server, reducing the total number of clients it

can serve at any given time. Application delivery controllers address this issue by

employing a technique often called "content spooling." Content spooling allows an

ADC to mediate between the client and server and allows the server to send content

as fast as possible to the mediating device. The ADC then takes on the

responsibility of spoon-feeding that content to the client, allowing the application or

web server to handle more requests.

Another challenge arising from the use of XML to transport data is, however, that

messages are all too often exceedingly fat. Message sizes in the 100's of kilobytes

are not uncommon, with messages reaching into the gigabytes in size less

common, but not unheard of.

As with the challenges related to the size of HTML and other text-based message

formats, the issues associated with the size of messages are easily addressed by

the right solution. A number of acceleration technologies exist today that are

capable of employing a number of compression techniques to reduce the overall

size of messages, thereby decreasing the time to transfer between server and client.

Industry standard compression technologies, stripping of white space, and other

data reduction technologies exist solely to respond to this challenge and reduce the

impact of large messages on the application infrastructure and delivery network.

Application acceleration-specific products as well as many of the features

associated with ADCs can provide many of these capabilities, as well as advanced

mechanisms for assisting with issues only found in browser-based applications

such as artificially imposed connection limitations that inhibit AJAX and browser-

based XML technologies from performing at full capacity. Dynamic content caching

is as applicable to XML as it is to HTML and related text-based formats, and can

increase the performance and capacity of SOA-based deployments dramatically.

WAN optimization controllers, as well, can provide additional improvements in

remote-office scenarios by taking advantage of symmetric data reduction

capabilities.

Conclusion
Many of the challenges associated with SOA deployments are the same challenges

we've encountered when deploying traditional web-based applications. The

underlying causes of these challenges may differ in a SOA, but the solutions to

address those challenges remain the same. The key to addressing SOA-related

challenges is to identify them as early as possible and include the appropriate

solution in the architecture to reduce the possibility of re-architecture being required

in a post-deployment environment.

Chal lenge Impact ADC Solut ion Benefit

Exponential
increase in
connections

Overhead of TCP connection
management adds to burden on servers
Additional hops add additional latency

Connection management
Hosting shared services

Reduces number of
servers required,
lowering costs
Reduces complexity and
time to manage
Maintains availability and
increases performance
Reduces requirement for
duplication of
functionality in deployed
services

XML
Message
size

More bandwidth consumed
More resources consumed to
parse/process messages

Content spooling
Compression
Caching
Hosting shared services
QoS

Increases capacity of
servers, reducing costs
and increasing
operational efficiency
Mitigates risk of attack
Prioritizes messages to
ensure SLA compliance

Scalability XML parsing is compute intensive and
requires horizontally scalable
infrastructure
XML appliances that offload XML
specific duties do not support
persistence, failover, or advanced load
balancing capabilities

ADCs support
persistence, advanced
load balancing capabilities
and failover scenarios

Maintains availability of
services
Increases performance
Protects investments in
technology by ensuring
horizontal scalability
Supports necessary
capabilities lacking in
other solutions

Security Exploitation of vulnerabilities in
application infrastructure
Theft of sensitive data

Application firewall
capabilities
Content scrubbing
Data validation

Prevents attacks from
reaching application
infrastructure
Improves performance of
application infrastructure
by reducing duplication
of code

WHITE PAPER

SOA: Challenges and Solutions
®

12

WHITE PAPER

SOA: Challenges and Solutions
®



•

•

•
•

•

•

•

•

•
•

•
•
•
•
•

•

•
•

•

•

• •

•
•

•

•

•

•

•
•

•

•

Overview
The benefits of SOA (Service-Oriented Architecture) have been well documented,

but the challenges associated with an enterprise wide SOA deployment have not.

While the distributed nature of a SOA encourages reuse and provides a high level of

agility for the business, it can also give rise to real challenges in the delivery of SOA-

based applications.

XML is the core technology enabler of SOA-based applications. Its verbose nature,

inherent lack of security, and the increase in connections between applications and

services required result in a number of challenges that are well-understood, and that

have proven solutions.

Challenge
The challenge in delivering SOA-based applications lies in identifying where potential

problems will arise and addressing them as early in the deployment cycle as

possible. Application delivery controllers are well suited to addressing both the well-

understood and unanticipated issues associated with delivering SOA-based

applications. Incorporating an application delivery controller (ADC) into the

deployment plans for your SOA can prevent unnecessary delays and even the need

to re-architect portions of your SOA infrastructure—saving man hours, expense,

and headaches.

Solution
SOA is both an architectural design pattern and a deployment methodology. That's

a nice way of saying that no one can define what any particular SOA implementation

should look like. While there have been attempts by various vendors in a number of

vertical SOA markets to create best practices for SOA environments, these have

largely failed due to the rather dynamic and organizational-specific nature of SOA

implementations. Because the services that comprise an SOA are business-focused

and encapsulate business specific entities, there is no single agreed upon definition

of what must exist and how components are deployed in order to bear the title SOA.

There are, however, a set of guiding principles underlying SOA that can be

considered a framework around which discussions on common SOA attributes and

challenges can be based. The distributed nature of services, for example, is a

fundamental attribute of all SOA implementations and as such challenges

associated with that deployment model can be applied to all SOA environments,

regardless of their actual design or implementation.

1. An SOA is comprised of distributed business services and achieves business

value through the reuse of those services.

2. An SOA is based upon industry accepted open standards.

3. An SOA reduces time to market through loose coupling of service interfaces

and its underlying implementation, enabling agility.

4. An SOA is heterogeneous and applications comprise n-tiers that may vary

widely based on the business process activity around which its composite

services are built.

These common attributes result in a common set of challenges that all

organizations face and that must be addressed at some point in the implementation

process. SOA guiding principles suggest that consideration be given to the

architecture of the deployment environment and infrastructure upon which services

will be deployed and delivered before said services are put into production, in parallel

with service definition and development efforts.

Fortunately, most of the challenges associated with deploying SOA are common to

all web-based application deployments. The difference between SOA-based

applications and traditional applications is that these challenges are often faced by

implementers earlier in the application lifecycle due to the challenges associated with

its core technology enabler, XML.

SOA Basics
In most cases, a SOA will be implemented using a variety of standards, the most

common being HTTP, WSDL (Web Services Definition Language), SOAP (Simple

Object Access Protocol), and XML (eXtensible Markup Language).These latter three

standards work together to deliver messages between services much in the same

way as the post office.

WSDL  →   Entry in an address book 
HTTP  →   Postal carrier (transportation)  
SOAP  →   Envelope (encapsulation)  
XML   →   Letter (message) 

If you're sending a letter then it is assumed you already know where to send it. In a

SOA that information comes from the WSDL, which lists the transportation options

(HTTP, FTP, SMTP) available, the possible addressees (remote functions available),

and the format requirements for data sent to each addressee (XML).

The same way an envelope has an address, SOAP carries with it information about

where the message should be delivered and who should open it. In the case of

SOAP and SOA, the addressee is not a who, but a what, as the addressee is really

the name of a remote function that should process the message inside. Just like a

"real" envelope, SOAP has specific formatting requirements and failure to properly

place information in the right place can cause delivery or processing issues.

With this information you can build a message based on the format requirements

(XML-based), put it in an envelope address to the receiver (SOAP), and then drop it

in the mailbox (HTTP) and wait for a response.

If you are the receiver of this message, the message must be delivered to you, you

have to read (parse) the envelope and determine the correct addressee (remote

function). The message then must be passed to the appropriate addressee (remote

function) for processing. Once the correct addressee has the letter, they can then

read (parse) the message and process it according to their designated function.

You'll note that this process requires a lot of reading (parsing) and formatting of

data, from the actual data you want to transfer to the envelope to the transport layer.

It also has the effect of adding two "layers" to the stack that must be processed.

This is one of the challenges associated with SOA—the computational overhead

associated with parsing and processing XML. Current analysis of the impact of XML

parsing and processing on server utilization estimates that approximately 30% of a

server's resources are consumed simply by the parsing and processing of XML. As

a reference point, SSL processing was also estimated to consume 30% of a server's

resources. Unlike SSL, XML currently has no effective server-based solution to

alleviate this burden such as hardware assisted processing, thus the issue of

increasing performance of XML-based services and applications must necessarily lie

outside the server and in the network.

Obviously a single SOAP message does not an SOA make. An SOA can be thought

of as a distributed organization that makes use of the postal service (network) to

deliver messages that assign tasks (remote functions) to individual business units

(services).

There is also nothing that disallows services from being built upon other

technologies. REST (Representational State Transfer) is often used as an example of

an alternative technology upon which an SOA can be built. REST services do not

use SOAP, choosing instead to use the HTTP URI to specify the addressee of the

message and putting the message right into the HTTP body. If SOAP is analogous

to a letter, then REST messages are most like a postcard where the message is not

encapsulated at all.

An SOA can mix and match both technologies, as well as others, though the few

existing best practices documents and SOA consultants are quick to nudge—and

even push—organizations toward standardizing upon one or the other. As many of

the benefits of an SOA including interoperability and platform independence rely on

an open-standards foundation, this push is not necessarily a bad one.

Connection Management
Architecting the distributed services upon which an SOA is built involves the

identification of common business entities and their related functions that can be

encapsulated in a service. A company's inventory, for example, is a common

business entity that is likely shared across all business units. Querying and updating

that inventory are two common functions performed by applications upon the

inventory. Similarly, a customer entity likely exists that is common to all applications

within an organization, with a common set of functions that can be performed on

that customer such as querying, updating, or creating.

In the past these common functions and entities were often duplicated across all

applications needing to apply application-specific logic to them. This necessarily

meant that any changes to those entities resulted in the need to modify every

application which used those entities. This is an inefficient model which leaves open

the very real possibility that differences between applications will occur in the

handling of these entities. These differences are replicated into the data stores,

causing problems between disparate applications needing access to that data to

perform specific tasks. The duplication of function across multiple applications also

has a deleterious effect on the ability of an organization to affect rapid change due to

the time and effort involved in deploying a change to any shared entity.

SOA resolves these issues by removing common entities and their associated

functions and establishing them as an atomic entity of their own (a service) that is

shared by all applications. Changes to the logic or data structure associated with

that entity are now reduced to a single code-set, and assures consistency across

the enterprise.

Traditional Application Design

SOA Application Design

While an SOA certainly improves consistency of application logic and reduces the

time required to introduce a change to business entities or their underlying data

structure, you will note that it has introduced complexity in terms of the number of

connections required.

This increase in connections required can have a negative impact on performance if

services are physically distributed across the network. The overhead associated with

TCP connection management is applied directly to the computational cost of the

application, usually to the detriment the application's overall performance. Also note

that each intermediary (i.e., device or application that touches an XML message)

incurs both TCP session and XML parsing performance penalties. As the number of

services associated with a single application increase, so also does the total

application response time increase.

There are essentially two ways in which ADCs can address this challenge. The first

is based on accepted and proven connection management technologies. By

allowing an ADC to manage the myriad interconnects between services, it can

offload the burden of managing TCP sessions on servers and increase their overall

capacity.

Connection management technology reduces the burden of TCP on servers

The second way in which ADCs address the challenges of distributed services is by

providing a network platform on which shared network services can be hosted.

Many of these functions—security, data scrubbing and transformation,

authentication, and caching are application specific, and therefore network-focused

point solutions can't host these shared services. They can only be supported by an

ADC or on an application platform such as those offered by BEA, IBM, Oracle, and

Microsoft.

By moving applicable network-focused shared services to an ADC, it reduces the

complexity of the SOA by consolidating services into a single network-hosted

platform without sacrificing performance. Hosting shared network services on an

ADC also has the added benefit of alleviating unnecessary parsing of XML from the

services in your SOA. By validating the credentials of an incoming message before it

reaches the service, the service only parses those messages which are authorized

to invoke its operations. This principle applies equally as well to XML and web-

application threat defense measures. Rather than impede performance by

duplicating scans for common threats such as SQL injection, overly large message

sizes, cookie tampering, and XML-specific attacks, it makes sense to provide a

single, shared service through which the message is initially validated and verified as

being free of malicious content.

By verifying the message at the point of ingress, it alleviates the need for each

service to perform that same verification and thus reduces the processing burden

on their respective servers and increasing overall capacity.

Scalability
The high computational cost of parsing and processing XML reduces the overall

capacity of already burdened application servers. The issue with XML arises from its

text-based formatting, which must be parsed and converted into objects that the

application server can understand and manipulate. This process is called

marshalling, and the performance of this process is heavily dependent upon the

complexity of the data. Each element in the data must be created and many

functions called to assign values to its attributes. In most environments this process

is accomplished via serialization, which is treated as a form of I/O within the system.

I/O in general is resource-intensive, requiring a lot of memory and CPU cycles on the

server regardless of platform.

This process occurs twice; once when the message is received to transform the

XML into a machine readable format, and again when the response is transformed

back into XML to be returned.

Because of the drain on resources caused by this process, and any additional

processing required such as connections and queries to databases, application

servers on which services are deployed are rapidly driven to high CPU utilization

states and a dwindling pool of available memory. This reduces the capability of the

application server to process requests in a timely fashion and introduces delay as

the system tries to judiciously process each request by sharing its resources

amongst them.

The effect of heavy load upon application servers is a well-understood problem, with

existing solutions such as ADCs assisting in the horizontal scaling of these servers

to distribute requests. Scaling application servers in an SOA environment becomes

important earlier in the deployment process because of the additional burden placed

on application servers by the parsing and processing of XML.

It is not only the application servers in an SOA environment that are in need of

scalability services. Many organizations have turned to XML gateway appliances

such as those from Reactivity and IBM DataPower to offload the compute heavy

XML processing and to provide additional XML-specific functionality such as WS-

Security, schema validation, virtualization of services, and transformation via XSLT

(eXtensible Stylesheet Language Transformation). These devices are capable of

performing these functions on XML-based messages much more efficiently than an

application server, but lack many of the enterprise-class features required of a

network device such as advanced load balancing algorithms, proven failover

methods, and session management.

In order to scale these devices an ADC is still a necessity. Care should be taken

when considering when the issue of load balancing and XML appliances arises.

While these devices are capable of load balancing services, their implementations

are rudimentary and inflexible in their deployment options. These devices do not

provide the advanced health-checking capabilities of ADCs, and can therefore fail to

properly route traffic as they have no awareness of the state of the application as is

the case with an ADC.

The traditional round-robin or least-connection algorithms used by both XML

appliances and application server clustering capabilities fail to recognize the

resource intensive nature of XML and are therefore incapable of truly distributing

requests within a pool or cluster of servers in the most efficient manner. The

capability of an application server to handle the load of SOA messages is dependent

not only on the number of requests it is currently attempting to handle, but on the

resources currently available. This means that advanced algorithms and capabilities

are required to determine the current state of the application and the server, which is

one of the domains of expertise of ADCs. A server may have only one connection or

be "next" in line to receive a request, but if it is currently parsing and processing a

very large XML message it may not have the memory or CPU cycles to process

another message and still meet SLA goals for both messages.

Security
XML is text-based and therefore human-readable. It is also web-based and hosted

on the same application infrastructure as "traditional" web-based applications,

making it subject to traditional web attacks.

Many of the same vulnerabilities that have plagued web-based applications are

applicable to XML-based applications. SQL injection is a common method of

attempting to extract unauthorized information from corporate databases or to

wreak general havoc by deleting important data. SQL injection can be as easily

accomplished through an XML message as it is a traditional HTTP GET or POST

formatted message.

Because this type of attack is well-understood by existing solutions designed to

protect web-applications, these same solutions provide a measure of security for

XML-based applications. So, too, can other security techniques such as signature

scanning mechanisms that seek to discover hidden viruses within web-borne

messages.

While it is always preferred that developers produce secure code, the reality is that if

they responded in code to every threat that they would spend most of their time

coding protection against new attacks, testing those solutions and then deploying

them, only to start again the next day. Additionally, such security-in-code

techniques require duplication of code throughout an application, which can

negatively impact performance and increases the possibility of other errors being

introduced into the code. The duplication of code is an anathema to the guiding

principles of SOA, which seeks to reduce the costs and time to market for software

solutions through the identification of such shared services.

By employing an application firewall to mitigate the risks associated with SOA and

distributed service environments, the principles of an SOA are upheld while

protecting applications from these types of well-understood threats. Moving as

much application security to the point of ingress has the added benefit of improving

performance, as messages that are clearly malicious never reach the application

server, thus reducing the burden on application infrastructure.

Bandwidth
A concern of many regarding XML is the increased size of messages flowing

between systems. Indeed, the SOAP envelope used by web services to carry the

XML messages itself adds a minimum of 256 bytes to every message, though

usually the increase is much higher.

The verbose nature of XML means that even the smallest of messages will become

approximately twice as large as the same message formatting as HTTP POST/GET

name-value pairs. When these messages are being transferred between servers in

the data center this increase oft has a negligible effect on bandwidth and transfer

times, owing to the fat nature of data center backbones. But with increased use of

Asynchronous JavaScript and XML (AJAX) as the basis for user-interfaces that

interact with SOA-based back end systems, it is important to consider the effect of

these increasingly large messages on delivery times to the client.

In addition to the potential use of AJAX clients to access SOA services, there is the

very real possibility that external partners and customers may be accessing services

via the public Internet, over an uncontrollable and often unpredictable public

network. In any case in which clients are accessing services via a public network

there is the possibility that a disparity exists between the client's ability to receive

responses as quickly as the server can send them. This has the effect of forcing

servers to segment data into small chunks that the client can easily consume, but

increases the total time required to deliver the content.

This ties up the application and web server, reducing the total number of clients it

can serve at any given time. Application delivery controllers address this issue by

employing a technique often called "content spooling." Content spooling allows an

ADC to mediate between the client and server and allows the server to send content

as fast as possible to the mediating device. The ADC then takes on the

responsibility of spoon-feeding that content to the client, allowing the application or

web server to handle more requests.

Another challenge arising from the use of XML to transport data is, however, that

messages are all too often exceedingly fat. Message sizes in the 100's of kilobytes

are not uncommon, with messages reaching into the gigabytes in size less

common, but not unheard of.

As with the challenges related to the size of HTML and other text-based message

formats, the issues associated with the size of messages are easily addressed by

the right solution. A number of acceleration technologies exist today that are

capable of employing a number of compression techniques to reduce the overall

size of messages, thereby decreasing the time to transfer between server and client.

Industry standard compression technologies, stripping of white space, and other

data reduction technologies exist solely to respond to this challenge and reduce the

impact of large messages on the application infrastructure and delivery network.

Application acceleration-specific products as well as many of the features

associated with ADCs can provide many of these capabilities, as well as advanced

mechanisms for assisting with issues only found in browser-based applications

such as artificially imposed connection limitations that inhibit AJAX and browser-

based XML technologies from performing at full capacity. Dynamic content caching

is as applicable to XML as it is to HTML and related text-based formats, and can

increase the performance and capacity of SOA-based deployments dramatically.

WAN optimization controllers, as well, can provide additional improvements in

remote-office scenarios by taking advantage of symmetric data reduction

capabilities.

Conclusion
Many of the challenges associated with SOA deployments are the same challenges

we've encountered when deploying traditional web-based applications. The

underlying causes of these challenges may differ in a SOA, but the solutions to

address those challenges remain the same. The key to addressing SOA-related

challenges is to identify them as early as possible and include the appropriate

solution in the architecture to reduce the possibility of re-architecture being required

in a post-deployment environment.

Chal lenge Impact ADC Solut ion Benefit

Exponential
increase in
connections

Overhead of TCP connection
management adds to burden on servers
Additional hops add additional latency

Connection management
Hosting shared services

Reduces number of
servers required,
lowering costs
Reduces complexity and
time to manage
Maintains availability and
increases performance
Reduces requirement for
duplication of
functionality in deployed
services

XML
Message
size

More bandwidth consumed
More resources consumed to
parse/process messages

Content spooling
Compression
Caching
Hosting shared services
QoS

Increases capacity of
servers, reducing costs
and increasing
operational efficiency
Mitigates risk of attack
Prioritizes messages to
ensure SLA compliance

Scalability XML parsing is compute intensive and
requires horizontally scalable
infrastructure
XML appliances that offload XML
specific duties do not support
persistence, failover, or advanced load
balancing capabilities

ADCs support
persistence, advanced
load balancing capabilities
and failover scenarios

Maintains availability of
services
Increases performance
Protects investments in
technology by ensuring
horizontal scalability
Supports necessary
capabilities lacking in
other solutions

Security Exploitation of vulnerabilities in
application infrastructure
Theft of sensitive data

Application firewall
capabilities
Content scrubbing
Data validation

Prevents attacks from
reaching application
infrastructure
Improves performance of
application infrastructure
by reducing duplication
of code

WHITE PAPER

SOA: Challenges and Solutions
®

13

F5 Networks, Inc.
401 Elliott Avenue West, Seattle, WA 98119
888-882-4447 www.f5.com

Americas
info@f5.com

Asia-Pacific
apacinfo@f5.com

Europe/Middle-East/Africa
emeainfo@f5.com

Japan
f5j-info@f5.com

©2015 F5 Networks, Inc. All rights reserved. F5, F5 Networks, and the F5 logo are trademarks of F5 Networks, Inc. in the U.S. and in certain other countries. Other F5
trademarks are identified at f5.com. Any other products, services, or company names referenced herein may be trademarks of their respective owners with no endorsement or
affiliation, express or implied, claimed by F5. No Doc Number Available 0113

WHITE PAPER

SOA: Challenges and Solutions
®


