
Virtualization Defined - Eight
Different Ways
Virtualization Defined - Eight Different Ways

White Paper
by Alan Murphy



Introduction

Imagine a typical office...

Alice: Hey Bob, great news! I just heard our IT department is going to implement

virtualization in the data center. It's about time we supported virtualization.

Bob: That is great news; virtualization is the wave of the future. What are we

virtualizing? The servers? The web applications? The storage network?"

Alice: Hmmm…good question; they didn't specify. But how many different versions

of virtualization could there be?

Alice has asked the million-dollar question: What does "going virtual" really mean in

today's IT world? Virtualization as a concept is not new; computational environment

virtualization has been around since the . rst mainframe systems. But recently, the

term "virtualization" has become ubiquitous, representing any type of process

obfuscation where a process is somehow removed from its physical operating

environment. Because of this ambiguity, virtualization can almost be applied to any

and all parts of an IT infrastructure. For example, mobile device emulators are a form

of virtualization because the hardware platform normally required to run the mobile

operating system has been emulated, removing the OS binding from the hardware it

was written for. But this is just one example of one type of virtualization; there are

many de. nitions of the term "virtualization" .oating around in the current lexicon,

and all (or at least most) of them are correct, which can be quite confusing.

This paper focuses on virtualization as it pertains to the data center; but before

considering any type of data center virtualization, it's important to de. ne what

technology or category of service you're trying to virtualize. Generally speaking,

virtualization falls into three categories: Operating System, Storage, and

Applications. But these categories are very broad and don't adequately delineate the

key aspects of data center virtualization. It's helpful to distill these broader

categories into eight, speci.c categories to thoroughly understand the differences

(and similarities) between the de. nitions of virtualization.

Operating System Virtualization
The most prevalent form of virtualization today, virtual operating systems (or virtual

machines) are quickly becoming a core component of the IT infrastructure.

Generally, this is the form of virtualization end-users are most familiar with. Virtual

machines are typically full implementations of standard operating systems, such as

Windows Vista or RedHat Enterprise Linux, running simultaneously on the same

physical hardware. Virtual Machine Managers (VMMs) manage each virtual machine

individually; each OS instance is unaware that 1) it's virtual and 2) that other virtual

operating systems are (or may be) running at the same time. Companies like

Microsoft, VMware, Intel, and AMD are leading the way in breaking the physical

relationship between an operating system and its native hardware, extending this

paradigm into the data center. As the primary driving force, data center

consolidation is bringing the bene. ts of virtual machines to the mainstream market,

allowing enterprises to reduce the number of physical machines in their data centers

without reducing the number of underlying applications. This trend ultimately saves

enterprises money on hardware, co-location fees, rack space, power, cable

management, and more.

Application Server Virtualization
Application Server Virtualization has been around since the . rst load balancer, which

explains why "application virtualization" is often used as a synonym for advanced

load balancing. The core concept of application server virtualization is best seen with

a reverse proxy load balancer: an appliance or service that provides access to many

different application services transparently. In a typical deployment, a reverse proxy

will host a virtual interface accessible to the end user on the "front end." On the

"back end," the reverse proxy will load balance a number of different servers and

applications such as a web server. The virtual interface—often referred to as a Virtual

IP or VIP—is exposed to the outside world, represents itself as the actual web

server, and manages the connections to and from the web server as needed. This

enables the load balancer to manage multiple web servers or applications as a single

instance, providing a more secure and robust topology than one allowing users

direct access to individual web servers. This is a one:many (one-to-many)

virtualization representation: one server is presented to the world, hiding the

availability of multiple servers behind a reverse proxy appliance. Application Server

Virtualization can be applied to any (and all) types of application deployments and

architectures, from fronting application logic servers to distributing the load between

multiple web server platforms, and even all the way back in the data center to the

data and storage tiers with database virtualization.

Application Virtualization
While they may sound very similar, Application Server and Application Virtualization

are two completely different concepts. What we now refer to as application

virtualization we used to call "thin clients." The technology is exactly the same, only

the name has changed to make it more IT-PC (politically correct, not personal

computer). Softgrid by Microsoft is an excellent example of deploying application

virtualization. Although you may be running Microsoft Word 2007 locally on your

laptop, the binaries, personal information, and running state are all stored on,

managed, and delivered by Softgrid. Your local laptop provides the CPU and RAM

required to run the software, but nothing is installed locally on your own machine.

Other types of Application Virtualization include Microsoft Terminal Services and

browser-based applications. All of these implementations depend on the virtual

application running locally and the management and application logic running

remotely.

Management Virtualization
Chances are you already implement administrative virtualization throughout your IT

organization, but you probably don't refer to it by this phrase. If you implement

separate passwords for your root/administrator accounts between your mail and

web servers, and your mail administrators don't know the password to the web

server and vise versa, then you've deployed management virtualization in its most

basic form. The paradigm can be extended down to segmented administration roles

on one platform or box, which is where segmented administration becomes

"virtual." User and group policies in Microsoft Windows XP, 2003, and Vista are an

excellent example of virtualized administration rights: Alice may be in the backup

group for the 2003 Active Directory server, but not in the admin group. She has read

access to all the . les she needs to back up, but she doesn't have rights to install

new . les or software. Although she is logging into the same sever that the true

administrator is logs into, her user experience differs from the administrator.

Management virtualization is also a key concept in overall data center management.

It's critical that the network administrators have full access to all the infrastructure

gear, such as core routers and switches, but that they not have admin-level access

to servers.

Network Virtualization
Network virtualization may be the most ambiguous, speci. c de. nition of

virtualization. For brevity, the scope of this discussion is relegated to what amounts

to virtual IP management and segmentation. A simple example of IP virtualization is

a VLAN: a single Ethernet port may support multiple virtual connections from

multiple IP addresses and networks, but they are virtually segmented using VLAN

tags. Each virtual IP connection over this single physical port is independent and

unaware of others' existence, but the switch is aware of each unique connection

and manages each one independently. Another example is virtual routing tables:

typically, a routing table and an IP network port share a 1:1 relationship, even

though that single port may host multiple virtual interfaces (such as VLANs or the

"eth0:1" virtual network adapters supported by Linux). The single routing table will

contain multiple routes for each virtual connection, but they are still managed in a

single table. Virtual routing tables change that paradigm into a one:many

relationship, where any single physical interface can maintain multiple routing tables,

each with multiple entries. This provides the interface with the ability to bring up (and

tear down) routing services on the .y for one network without interrupting other

services and routing tables on that same interface.

Hardware Virtualization
Hardware virtualization is very similar in concept to OS/Platform virtualization, and to

some degree is required for OS virtualization to occur. Hardware virtualization breaks

up pieces and locations of physical hardware into independent segments and

manages those segments as separate, individual components. Although they fall

into different classi. cations, both symmetric and asymmetric multiprocessing are

examples of hardware virtualization. In both instances, the process requesting CPU

time isn't aware which processor it's going to run on; it just requests CPU time from

the OS scheduler and the scheduler takes the responsibility of allocating processor

time. As far as the process is concerned, it could be spread across any number of

CPUs and any part of RAM, so long as it's able to run unaffected.

Another example of hardware virtualization is "slicing": carving out precise portions

of the system to run in a "walled garden," such as allocating a .xed 25% of CPU

resources to bulk encryption. If there are no processes that need to crunch

numbers on the CPU for block encryption, then that 25% of the CPU will go

unutilized. If too many processes need mathematical computations at once and

require more than 25%, they will be queued and run as a FIFO buffer because the

CPU isn't allowed to give out more than 25% of its resources to encryption. This

type of hardware virtualization is sometimes referred to as pre-allocation.

Asymmetric multiprocessing is a form of pre-allocation virtualization where certain

tasks are only run on certain CPUs. In contrast, symmetric multiprocessing is a form

of dynamic allocation, where CPUs are interchangeable and used as needed by any

part of the management system. Each classi.cation of hardware virtualization is

unique and has value, depending on the implementation. Pre-allocation virtualization

is perfect for very speci.c hardware tasks, such as of.oading functions to a highly

optimized, single-purpose chip. However, pre-allocation of commodity hardware can

cause arti.cial resource shortages if the allocated chunk is underutilized. Dynamic

allocation virtualization is a more standard approach and typically offers greater

bene. t when compared to pre-allocation. For true virtual service provisioning,

dynamic resource allocation is important because it allows complete hardware

management and control for resources as needed; virtual resources can be

allocated as long as hardware resources are still available. The downside to dynamic

allocation implementations is that they typically do not provide full control over the

dynamicity, leading to processes which can consume all available resources.

Storage Virtualization
As another example of a tried-and-true technology that's been dubbed

"virtualization," storage virtualization can be broken up into two general classes:

block virtualization and . le virtualization. Block virtualization is best summed up by

Storage Area Network (SAN) and Network Attached Storage (NAS) technologies:

distributed storage networks that appear to be single physical devices. Under the

hood, SAN devices themselves typically implement another form of Storage

Virtualization: RAID. iSCSI is another very common and speci.c virtual

implementation of block virtualization, allowing an operating system or application to

map a virtual block device, such as a mounted drive, to a local network adapter

(software or hardware) instead of a physical drive controller. The iSCSI network

adapter translates block calls from the application to network packets the SAN

understands and then back again, essentially providing a virtual hard drive.

File virtualization moves the virtual layer up into the more human-consumable . le

and directory structure level. Most . le virtualization technologies sit in front of

storage networks and keep track of which . les and directories reside on which

storage devices, maintaining global mappings of . le locations. When a request is

made to read a . le, the user may think this . le is statically located on their personal

remote drive, P:\My Files\ budget.xls; however, the . le virtualization appliance knows

that the . le is actually located on an SMB server in a data center across the globe at

//10.0.16.125/. nance/alice/budget-document/budget.xls. File-level virtualization

obfuscates the static virtual location pointer of a . le (in this case, on Alice's P:\ drive)

from the physical location, allowing the back-end network to remain dynamic. If the

IP address for the SMB server has to change, or the connection needs to be re-

routed to another data center entirely, only the virtual appliance's location map

needs to be updated, not every user that needs to access their P:\ drive.

Service Virtualization
And finally, we reach the macro de. nition of virtualization: service virtualization.

Service virtualization is consolidation of all of the above de. nitions into one catch-all

catchphrase. Service virtualization connects all of the components utilized in

delivering an application over the network, and includes the process of making all

pieces of an application work together regardless of where those pieces physically

reside. This is why service virtualization is typically used as an enabler for application

availability. For example, a web application typically has many parts: the user-facing

HTML; the application server that processes user input; the SOA gears that

coordinate service and data availability between each component; the database

back-end for user, application, and SOA data; the network that delivers the

application components; and the storage network that stores the application code

and data. Service virtualization allows each one of the pieces to function

independently and be "called up" as needed for the entire application to function

properly. When we look deeper into these individual application components, we

may see that the web server is load-balanced between 15 virtual machine operating

systems, the SOA requests are pushed through any number of XML gateways on

the wire, the database servers may be located in one of .ve global data centers, and

so on. Service virtualization combines these independent pieces and presents them

together to the user as a single, complete application.

While Service virtualization may encompass all the current de. nitions of

virtualization, it's by no means where IT will stop de. ning the term. With the

pervasive and varied use of the word (as well as the technologies it refers to), there

may never be a ". nal" de. nition for virtualization; it will continue to evolve and

expand as more and more technologies become less and less dependent on rigid

operating environments.

1

WHITE PAPER

Virtualization Defined - Eight Different Ways
®



Introduction

Imagine a typical office...

Alice: Hey Bob, great news! I just heard our IT department is going to implement

virtualization in the data center. It's about time we supported virtualization.

Bob: That is great news; virtualization is the wave of the future. What are we

virtualizing? The servers? The web applications? The storage network?"

Alice: Hmmm…good question; they didn't specify. But how many different versions

of virtualization could there be?

Alice has asked the million-dollar question: What does "going virtual" really mean in

today's IT world? Virtualization as a concept is not new; computational environment

virtualization has been around since the . rst mainframe systems. But recently, the

term "virtualization" has become ubiquitous, representing any type of process

obfuscation where a process is somehow removed from its physical operating

environment. Because of this ambiguity, virtualization can almost be applied to any

and all parts of an IT infrastructure. For example, mobile device emulators are a form

of virtualization because the hardware platform normally required to run the mobile

operating system has been emulated, removing the OS binding from the hardware it

was written for. But this is just one example of one type of virtualization; there are

many de. nitions of the term "virtualization" .oating around in the current lexicon,

and all (or at least most) of them are correct, which can be quite confusing.

This paper focuses on virtualization as it pertains to the data center; but before

considering any type of data center virtualization, it's important to de. ne what

technology or category of service you're trying to virtualize. Generally speaking,

virtualization falls into three categories: Operating System, Storage, and

Applications. But these categories are very broad and don't adequately delineate the

key aspects of data center virtualization. It's helpful to distill these broader

categories into eight, speci.c categories to thoroughly understand the differences

(and similarities) between the de. nitions of virtualization.

Operating System Virtualization
The most prevalent form of virtualization today, virtual operating systems (or virtual

machines) are quickly becoming a core component of the IT infrastructure.

Generally, this is the form of virtualization end-users are most familiar with. Virtual

machines are typically full implementations of standard operating systems, such as

Windows Vista or RedHat Enterprise Linux, running simultaneously on the same

physical hardware. Virtual Machine Managers (VMMs) manage each virtual machine

individually; each OS instance is unaware that 1) it's virtual and 2) that other virtual

operating systems are (or may be) running at the same time. Companies like

Microsoft, VMware, Intel, and AMD are leading the way in breaking the physical

relationship between an operating system and its native hardware, extending this

paradigm into the data center. As the primary driving force, data center

consolidation is bringing the bene. ts of virtual machines to the mainstream market,

allowing enterprises to reduce the number of physical machines in their data centers

without reducing the number of underlying applications. This trend ultimately saves

enterprises money on hardware, co-location fees, rack space, power, cable

management, and more.

Application Server Virtualization
Application Server Virtualization has been around since the . rst load balancer, which

explains why "application virtualization" is often used as a synonym for advanced

load balancing. The core concept of application server virtualization is best seen with

a reverse proxy load balancer: an appliance or service that provides access to many

different application services transparently. In a typical deployment, a reverse proxy

will host a virtual interface accessible to the end user on the "front end." On the

"back end," the reverse proxy will load balance a number of different servers and

applications such as a web server. The virtual interface—often referred to as a Virtual

IP or VIP—is exposed to the outside world, represents itself as the actual web

server, and manages the connections to and from the web server as needed. This

enables the load balancer to manage multiple web servers or applications as a single

instance, providing a more secure and robust topology than one allowing users

direct access to individual web servers. This is a one:many (one-to-many)

virtualization representation: one server is presented to the world, hiding the

availability of multiple servers behind a reverse proxy appliance. Application Server

Virtualization can be applied to any (and all) types of application deployments and

architectures, from fronting application logic servers to distributing the load between

multiple web server platforms, and even all the way back in the data center to the

data and storage tiers with database virtualization.

Application Virtualization
While they may sound very similar, Application Server and Application Virtualization

are two completely different concepts. What we now refer to as application

virtualization we used to call "thin clients." The technology is exactly the same, only

the name has changed to make it more IT-PC (politically correct, not personal

computer). Softgrid by Microsoft is an excellent example of deploying application

virtualization. Although you may be running Microsoft Word 2007 locally on your

laptop, the binaries, personal information, and running state are all stored on,

managed, and delivered by Softgrid. Your local laptop provides the CPU and RAM

required to run the software, but nothing is installed locally on your own machine.

Other types of Application Virtualization include Microsoft Terminal Services and

browser-based applications. All of these implementations depend on the virtual

application running locally and the management and application logic running

remotely.

Management Virtualization
Chances are you already implement administrative virtualization throughout your IT

organization, but you probably don't refer to it by this phrase. If you implement

separate passwords for your root/administrator accounts between your mail and

web servers, and your mail administrators don't know the password to the web

server and vise versa, then you've deployed management virtualization in its most

basic form. The paradigm can be extended down to segmented administration roles

on one platform or box, which is where segmented administration becomes

"virtual." User and group policies in Microsoft Windows XP, 2003, and Vista are an

excellent example of virtualized administration rights: Alice may be in the backup

group for the 2003 Active Directory server, but not in the admin group. She has read

access to all the . les she needs to back up, but she doesn't have rights to install

new . les or software. Although she is logging into the same sever that the true

administrator is logs into, her user experience differs from the administrator.

Management virtualization is also a key concept in overall data center management.

It's critical that the network administrators have full access to all the infrastructure

gear, such as core routers and switches, but that they not have admin-level access

to servers.

Network Virtualization
Network virtualization may be the most ambiguous, speci. c de. nition of

virtualization. For brevity, the scope of this discussion is relegated to what amounts

to virtual IP management and segmentation. A simple example of IP virtualization is

a VLAN: a single Ethernet port may support multiple virtual connections from

multiple IP addresses and networks, but they are virtually segmented using VLAN

tags. Each virtual IP connection over this single physical port is independent and

unaware of others' existence, but the switch is aware of each unique connection

and manages each one independently. Another example is virtual routing tables:

typically, a routing table and an IP network port share a 1:1 relationship, even

though that single port may host multiple virtual interfaces (such as VLANs or the

"eth0:1" virtual network adapters supported by Linux). The single routing table will

contain multiple routes for each virtual connection, but they are still managed in a

single table. Virtual routing tables change that paradigm into a one:many

relationship, where any single physical interface can maintain multiple routing tables,

each with multiple entries. This provides the interface with the ability to bring up (and

tear down) routing services on the .y for one network without interrupting other

services and routing tables on that same interface.

Hardware Virtualization
Hardware virtualization is very similar in concept to OS/Platform virtualization, and to

some degree is required for OS virtualization to occur. Hardware virtualization breaks

up pieces and locations of physical hardware into independent segments and

manages those segments as separate, individual components. Although they fall

into different classi. cations, both symmetric and asymmetric multiprocessing are

examples of hardware virtualization. In both instances, the process requesting CPU

time isn't aware which processor it's going to run on; it just requests CPU time from

the OS scheduler and the scheduler takes the responsibility of allocating processor

time. As far as the process is concerned, it could be spread across any number of

CPUs and any part of RAM, so long as it's able to run unaffected.

Another example of hardware virtualization is "slicing": carving out precise portions

of the system to run in a "walled garden," such as allocating a .xed 25% of CPU

resources to bulk encryption. If there are no processes that need to crunch

numbers on the CPU for block encryption, then that 25% of the CPU will go

unutilized. If too many processes need mathematical computations at once and

require more than 25%, they will be queued and run as a FIFO buffer because the

CPU isn't allowed to give out more than 25% of its resources to encryption. This

type of hardware virtualization is sometimes referred to as pre-allocation.

Asymmetric multiprocessing is a form of pre-allocation virtualization where certain

tasks are only run on certain CPUs. In contrast, symmetric multiprocessing is a form

of dynamic allocation, where CPUs are interchangeable and used as needed by any

part of the management system. Each classi.cation of hardware virtualization is

unique and has value, depending on the implementation. Pre-allocation virtualization

is perfect for very speci.c hardware tasks, such as of.oading functions to a highly

optimized, single-purpose chip. However, pre-allocation of commodity hardware can

cause arti.cial resource shortages if the allocated chunk is underutilized. Dynamic

allocation virtualization is a more standard approach and typically offers greater

bene. t when compared to pre-allocation. For true virtual service provisioning,

dynamic resource allocation is important because it allows complete hardware

management and control for resources as needed; virtual resources can be

allocated as long as hardware resources are still available. The downside to dynamic

allocation implementations is that they typically do not provide full control over the

dynamicity, leading to processes which can consume all available resources.

Storage Virtualization
As another example of a tried-and-true technology that's been dubbed

"virtualization," storage virtualization can be broken up into two general classes:

block virtualization and . le virtualization. Block virtualization is best summed up by

Storage Area Network (SAN) and Network Attached Storage (NAS) technologies:

distributed storage networks that appear to be single physical devices. Under the

hood, SAN devices themselves typically implement another form of Storage

Virtualization: RAID. iSCSI is another very common and speci.c virtual

implementation of block virtualization, allowing an operating system or application to

map a virtual block device, such as a mounted drive, to a local network adapter

(software or hardware) instead of a physical drive controller. The iSCSI network

adapter translates block calls from the application to network packets the SAN

understands and then back again, essentially providing a virtual hard drive.

File virtualization moves the virtual layer up into the more human-consumable . le

and directory structure level. Most . le virtualization technologies sit in front of

storage networks and keep track of which . les and directories reside on which

storage devices, maintaining global mappings of . le locations. When a request is

made to read a . le, the user may think this . le is statically located on their personal

remote drive, P:\My Files\ budget.xls; however, the . le virtualization appliance knows

that the . le is actually located on an SMB server in a data center across the globe at

//10.0.16.125/. nance/alice/budget-document/budget.xls. File-level virtualization

obfuscates the static virtual location pointer of a . le (in this case, on Alice's P:\ drive)

from the physical location, allowing the back-end network to remain dynamic. If the

IP address for the SMB server has to change, or the connection needs to be re-

routed to another data center entirely, only the virtual appliance's location map

needs to be updated, not every user that needs to access their P:\ drive.

Service Virtualization
And finally, we reach the macro de. nition of virtualization: service virtualization.

Service virtualization is consolidation of all of the above de. nitions into one catch-all

catchphrase. Service virtualization connects all of the components utilized in

delivering an application over the network, and includes the process of making all

pieces of an application work together regardless of where those pieces physically

reside. This is why service virtualization is typically used as an enabler for application

availability. For example, a web application typically has many parts: the user-facing

HTML; the application server that processes user input; the SOA gears that

coordinate service and data availability between each component; the database

back-end for user, application, and SOA data; the network that delivers the

application components; and the storage network that stores the application code

and data. Service virtualization allows each one of the pieces to function

independently and be "called up" as needed for the entire application to function

properly. When we look deeper into these individual application components, we

may see that the web server is load-balanced between 15 virtual machine operating

systems, the SOA requests are pushed through any number of XML gateways on

the wire, the database servers may be located in one of .ve global data centers, and

so on. Service virtualization combines these independent pieces and presents them

together to the user as a single, complete application.

While Service virtualization may encompass all the current de. nitions of

virtualization, it's by no means where IT will stop de. ning the term. With the

pervasive and varied use of the word (as well as the technologies it refers to), there

may never be a ". nal" de. nition for virtualization; it will continue to evolve and

expand as more and more technologies become less and less dependent on rigid

operating environments.

WHITE PAPER

Virtualization Defined - Eight Different Ways
®

2

WHITE PAPER

Virtualization Defined - Eight Different Ways
®



Introduction

Imagine a typical office...

Alice: Hey Bob, great news! I just heard our IT department is going to implement

virtualization in the data center. It's about time we supported virtualization.

Bob: That is great news; virtualization is the wave of the future. What are we

virtualizing? The servers? The web applications? The storage network?"

Alice: Hmmm…good question; they didn't specify. But how many different versions

of virtualization could there be?

Alice has asked the million-dollar question: What does "going virtual" really mean in

today's IT world? Virtualization as a concept is not new; computational environment

virtualization has been around since the . rst mainframe systems. But recently, the

term "virtualization" has become ubiquitous, representing any type of process

obfuscation where a process is somehow removed from its physical operating

environment. Because of this ambiguity, virtualization can almost be applied to any

and all parts of an IT infrastructure. For example, mobile device emulators are a form

of virtualization because the hardware platform normally required to run the mobile

operating system has been emulated, removing the OS binding from the hardware it

was written for. But this is just one example of one type of virtualization; there are

many de. nitions of the term "virtualization" .oating around in the current lexicon,

and all (or at least most) of them are correct, which can be quite confusing.

This paper focuses on virtualization as it pertains to the data center; but before

considering any type of data center virtualization, it's important to de. ne what

technology or category of service you're trying to virtualize. Generally speaking,

virtualization falls into three categories: Operating System, Storage, and

Applications. But these categories are very broad and don't adequately delineate the

key aspects of data center virtualization. It's helpful to distill these broader

categories into eight, speci.c categories to thoroughly understand the differences

(and similarities) between the de. nitions of virtualization.

Operating System Virtualization
The most prevalent form of virtualization today, virtual operating systems (or virtual

machines) are quickly becoming a core component of the IT infrastructure.

Generally, this is the form of virtualization end-users are most familiar with. Virtual

machines are typically full implementations of standard operating systems, such as

Windows Vista or RedHat Enterprise Linux, running simultaneously on the same

physical hardware. Virtual Machine Managers (VMMs) manage each virtual machine

individually; each OS instance is unaware that 1) it's virtual and 2) that other virtual

operating systems are (or may be) running at the same time. Companies like

Microsoft, VMware, Intel, and AMD are leading the way in breaking the physical

relationship between an operating system and its native hardware, extending this

paradigm into the data center. As the primary driving force, data center

consolidation is bringing the bene. ts of virtual machines to the mainstream market,

allowing enterprises to reduce the number of physical machines in their data centers

without reducing the number of underlying applications. This trend ultimately saves

enterprises money on hardware, co-location fees, rack space, power, cable

management, and more.

Application Server Virtualization
Application Server Virtualization has been around since the . rst load balancer, which

explains why "application virtualization" is often used as a synonym for advanced

load balancing. The core concept of application server virtualization is best seen with

a reverse proxy load balancer: an appliance or service that provides access to many

different application services transparently. In a typical deployment, a reverse proxy

will host a virtual interface accessible to the end user on the "front end." On the

"back end," the reverse proxy will load balance a number of different servers and

applications such as a web server. The virtual interface—often referred to as a Virtual

IP or VIP—is exposed to the outside world, represents itself as the actual web

server, and manages the connections to and from the web server as needed. This

enables the load balancer to manage multiple web servers or applications as a single

instance, providing a more secure and robust topology than one allowing users

direct access to individual web servers. This is a one:many (one-to-many)

virtualization representation: one server is presented to the world, hiding the

availability of multiple servers behind a reverse proxy appliance. Application Server

Virtualization can be applied to any (and all) types of application deployments and

architectures, from fronting application logic servers to distributing the load between

multiple web server platforms, and even all the way back in the data center to the

data and storage tiers with database virtualization.

Application Virtualization
While they may sound very similar, Application Server and Application Virtualization

are two completely different concepts. What we now refer to as application

virtualization we used to call "thin clients." The technology is exactly the same, only

the name has changed to make it more IT-PC (politically correct, not personal

computer). Softgrid by Microsoft is an excellent example of deploying application

virtualization. Although you may be running Microsoft Word 2007 locally on your

laptop, the binaries, personal information, and running state are all stored on,

managed, and delivered by Softgrid. Your local laptop provides the CPU and RAM

required to run the software, but nothing is installed locally on your own machine.

Other types of Application Virtualization include Microsoft Terminal Services and

browser-based applications. All of these implementations depend on the virtual

application running locally and the management and application logic running

remotely.

Management Virtualization
Chances are you already implement administrative virtualization throughout your IT

organization, but you probably don't refer to it by this phrase. If you implement

separate passwords for your root/administrator accounts between your mail and

web servers, and your mail administrators don't know the password to the web

server and vise versa, then you've deployed management virtualization in its most

basic form. The paradigm can be extended down to segmented administration roles

on one platform or box, which is where segmented administration becomes

"virtual." User and group policies in Microsoft Windows XP, 2003, and Vista are an

excellent example of virtualized administration rights: Alice may be in the backup

group for the 2003 Active Directory server, but not in the admin group. She has read

access to all the . les she needs to back up, but she doesn't have rights to install

new . les or software. Although she is logging into the same sever that the true

administrator is logs into, her user experience differs from the administrator.

Management virtualization is also a key concept in overall data center management.

It's critical that the network administrators have full access to all the infrastructure

gear, such as core routers and switches, but that they not have admin-level access

to servers.

Network Virtualization
Network virtualization may be the most ambiguous, speci. c de. nition of

virtualization. For brevity, the scope of this discussion is relegated to what amounts

to virtual IP management and segmentation. A simple example of IP virtualization is

a VLAN: a single Ethernet port may support multiple virtual connections from

multiple IP addresses and networks, but they are virtually segmented using VLAN

tags. Each virtual IP connection over this single physical port is independent and

unaware of others' existence, but the switch is aware of each unique connection

and manages each one independently. Another example is virtual routing tables:

typically, a routing table and an IP network port share a 1:1 relationship, even

though that single port may host multiple virtual interfaces (such as VLANs or the

"eth0:1" virtual network adapters supported by Linux). The single routing table will

contain multiple routes for each virtual connection, but they are still managed in a

single table. Virtual routing tables change that paradigm into a one:many

relationship, where any single physical interface can maintain multiple routing tables,

each with multiple entries. This provides the interface with the ability to bring up (and

tear down) routing services on the .y for one network without interrupting other

services and routing tables on that same interface.

Hardware Virtualization
Hardware virtualization is very similar in concept to OS/Platform virtualization, and to

some degree is required for OS virtualization to occur. Hardware virtualization breaks

up pieces and locations of physical hardware into independent segments and

manages those segments as separate, individual components. Although they fall

into different classi. cations, both symmetric and asymmetric multiprocessing are

examples of hardware virtualization. In both instances, the process requesting CPU

time isn't aware which processor it's going to run on; it just requests CPU time from

the OS scheduler and the scheduler takes the responsibility of allocating processor

time. As far as the process is concerned, it could be spread across any number of

CPUs and any part of RAM, so long as it's able to run unaffected.

Another example of hardware virtualization is "slicing": carving out precise portions

of the system to run in a "walled garden," such as allocating a .xed 25% of CPU

resources to bulk encryption. If there are no processes that need to crunch

numbers on the CPU for block encryption, then that 25% of the CPU will go

unutilized. If too many processes need mathematical computations at once and

require more than 25%, they will be queued and run as a FIFO buffer because the

CPU isn't allowed to give out more than 25% of its resources to encryption. This

type of hardware virtualization is sometimes referred to as pre-allocation.

Asymmetric multiprocessing is a form of pre-allocation virtualization where certain

tasks are only run on certain CPUs. In contrast, symmetric multiprocessing is a form

of dynamic allocation, where CPUs are interchangeable and used as needed by any

part of the management system. Each classi.cation of hardware virtualization is

unique and has value, depending on the implementation. Pre-allocation virtualization

is perfect for very speci.c hardware tasks, such as of.oading functions to a highly

optimized, single-purpose chip. However, pre-allocation of commodity hardware can

cause arti.cial resource shortages if the allocated chunk is underutilized. Dynamic

allocation virtualization is a more standard approach and typically offers greater

bene. t when compared to pre-allocation. For true virtual service provisioning,

dynamic resource allocation is important because it allows complete hardware

management and control for resources as needed; virtual resources can be

allocated as long as hardware resources are still available. The downside to dynamic

allocation implementations is that they typically do not provide full control over the

dynamicity, leading to processes which can consume all available resources.

Storage Virtualization
As another example of a tried-and-true technology that's been dubbed

"virtualization," storage virtualization can be broken up into two general classes:

block virtualization and . le virtualization. Block virtualization is best summed up by

Storage Area Network (SAN) and Network Attached Storage (NAS) technologies:

distributed storage networks that appear to be single physical devices. Under the

hood, SAN devices themselves typically implement another form of Storage

Virtualization: RAID. iSCSI is another very common and speci.c virtual

implementation of block virtualization, allowing an operating system or application to

map a virtual block device, such as a mounted drive, to a local network adapter

(software or hardware) instead of a physical drive controller. The iSCSI network

adapter translates block calls from the application to network packets the SAN

understands and then back again, essentially providing a virtual hard drive.

File virtualization moves the virtual layer up into the more human-consumable . le

and directory structure level. Most . le virtualization technologies sit in front of

storage networks and keep track of which . les and directories reside on which

storage devices, maintaining global mappings of . le locations. When a request is

made to read a . le, the user may think this . le is statically located on their personal

remote drive, P:\My Files\ budget.xls; however, the . le virtualization appliance knows

that the . le is actually located on an SMB server in a data center across the globe at

//10.0.16.125/. nance/alice/budget-document/budget.xls. File-level virtualization

obfuscates the static virtual location pointer of a . le (in this case, on Alice's P:\ drive)

from the physical location, allowing the back-end network to remain dynamic. If the

IP address for the SMB server has to change, or the connection needs to be re-

routed to another data center entirely, only the virtual appliance's location map

needs to be updated, not every user that needs to access their P:\ drive.

Service Virtualization
And finally, we reach the macro de. nition of virtualization: service virtualization.

Service virtualization is consolidation of all of the above de. nitions into one catch-all

catchphrase. Service virtualization connects all of the components utilized in

delivering an application over the network, and includes the process of making all

pieces of an application work together regardless of where those pieces physically

reside. This is why service virtualization is typically used as an enabler for application

availability. For example, a web application typically has many parts: the user-facing

HTML; the application server that processes user input; the SOA gears that

coordinate service and data availability between each component; the database

back-end for user, application, and SOA data; the network that delivers the

application components; and the storage network that stores the application code

and data. Service virtualization allows each one of the pieces to function

independently and be "called up" as needed for the entire application to function

properly. When we look deeper into these individual application components, we

may see that the web server is load-balanced between 15 virtual machine operating

systems, the SOA requests are pushed through any number of XML gateways on

the wire, the database servers may be located in one of .ve global data centers, and

so on. Service virtualization combines these independent pieces and presents them

together to the user as a single, complete application.

While Service virtualization may encompass all the current de. nitions of

virtualization, it's by no means where IT will stop de. ning the term. With the

pervasive and varied use of the word (as well as the technologies it refers to), there

may never be a ". nal" de. nition for virtualization; it will continue to evolve and

expand as more and more technologies become less and less dependent on rigid

operating environments.

WHITE PAPER

Virtualization Defined - Eight Different Ways
®

3

WHITE PAPER

Virtualization Defined - Eight Different Ways
®



Introduction

Imagine a typical office...

Alice: Hey Bob, great news! I just heard our IT department is going to implement

virtualization in the data center. It's about time we supported virtualization.

Bob: That is great news; virtualization is the wave of the future. What are we

virtualizing? The servers? The web applications? The storage network?"

Alice: Hmmm…good question; they didn't specify. But how many different versions

of virtualization could there be?

Alice has asked the million-dollar question: What does "going virtual" really mean in

today's IT world? Virtualization as a concept is not new; computational environment

virtualization has been around since the . rst mainframe systems. But recently, the

term "virtualization" has become ubiquitous, representing any type of process

obfuscation where a process is somehow removed from its physical operating

environment. Because of this ambiguity, virtualization can almost be applied to any

and all parts of an IT infrastructure. For example, mobile device emulators are a form

of virtualization because the hardware platform normally required to run the mobile

operating system has been emulated, removing the OS binding from the hardware it

was written for. But this is just one example of one type of virtualization; there are

many de. nitions of the term "virtualization" .oating around in the current lexicon,

and all (or at least most) of them are correct, which can be quite confusing.

This paper focuses on virtualization as it pertains to the data center; but before

considering any type of data center virtualization, it's important to de. ne what

technology or category of service you're trying to virtualize. Generally speaking,

virtualization falls into three categories: Operating System, Storage, and

Applications. But these categories are very broad and don't adequately delineate the

key aspects of data center virtualization. It's helpful to distill these broader

categories into eight, speci.c categories to thoroughly understand the differences

(and similarities) between the de. nitions of virtualization.

Operating System Virtualization
The most prevalent form of virtualization today, virtual operating systems (or virtual

machines) are quickly becoming a core component of the IT infrastructure.

Generally, this is the form of virtualization end-users are most familiar with. Virtual

machines are typically full implementations of standard operating systems, such as

Windows Vista or RedHat Enterprise Linux, running simultaneously on the same

physical hardware. Virtual Machine Managers (VMMs) manage each virtual machine

individually; each OS instance is unaware that 1) it's virtual and 2) that other virtual

operating systems are (or may be) running at the same time. Companies like

Microsoft, VMware, Intel, and AMD are leading the way in breaking the physical

relationship between an operating system and its native hardware, extending this

paradigm into the data center. As the primary driving force, data center

consolidation is bringing the bene. ts of virtual machines to the mainstream market,

allowing enterprises to reduce the number of physical machines in their data centers

without reducing the number of underlying applications. This trend ultimately saves

enterprises money on hardware, co-location fees, rack space, power, cable

management, and more.

Application Server Virtualization
Application Server Virtualization has been around since the . rst load balancer, which

explains why "application virtualization" is often used as a synonym for advanced

load balancing. The core concept of application server virtualization is best seen with

a reverse proxy load balancer: an appliance or service that provides access to many

different application services transparently. In a typical deployment, a reverse proxy

will host a virtual interface accessible to the end user on the "front end." On the

"back end," the reverse proxy will load balance a number of different servers and

applications such as a web server. The virtual interface—often referred to as a Virtual

IP or VIP—is exposed to the outside world, represents itself as the actual web

server, and manages the connections to and from the web server as needed. This

enables the load balancer to manage multiple web servers or applications as a single

instance, providing a more secure and robust topology than one allowing users

direct access to individual web servers. This is a one:many (one-to-many)

virtualization representation: one server is presented to the world, hiding the

availability of multiple servers behind a reverse proxy appliance. Application Server

Virtualization can be applied to any (and all) types of application deployments and

architectures, from fronting application logic servers to distributing the load between

multiple web server platforms, and even all the way back in the data center to the

data and storage tiers with database virtualization.

Application Virtualization
While they may sound very similar, Application Server and Application Virtualization

are two completely different concepts. What we now refer to as application

virtualization we used to call "thin clients." The technology is exactly the same, only

the name has changed to make it more IT-PC (politically correct, not personal

computer). Softgrid by Microsoft is an excellent example of deploying application

virtualization. Although you may be running Microsoft Word 2007 locally on your

laptop, the binaries, personal information, and running state are all stored on,

managed, and delivered by Softgrid. Your local laptop provides the CPU and RAM

required to run the software, but nothing is installed locally on your own machine.

Other types of Application Virtualization include Microsoft Terminal Services and

browser-based applications. All of these implementations depend on the virtual

application running locally and the management and application logic running

remotely.

Management Virtualization
Chances are you already implement administrative virtualization throughout your IT

organization, but you probably don't refer to it by this phrase. If you implement

separate passwords for your root/administrator accounts between your mail and

web servers, and your mail administrators don't know the password to the web

server and vise versa, then you've deployed management virtualization in its most

basic form. The paradigm can be extended down to segmented administration roles

on one platform or box, which is where segmented administration becomes

"virtual." User and group policies in Microsoft Windows XP, 2003, and Vista are an

excellent example of virtualized administration rights: Alice may be in the backup

group for the 2003 Active Directory server, but not in the admin group. She has read

access to all the . les she needs to back up, but she doesn't have rights to install

new . les or software. Although she is logging into the same sever that the true

administrator is logs into, her user experience differs from the administrator.

Management virtualization is also a key concept in overall data center management.

It's critical that the network administrators have full access to all the infrastructure

gear, such as core routers and switches, but that they not have admin-level access

to servers.

Network Virtualization
Network virtualization may be the most ambiguous, speci. c de. nition of

virtualization. For brevity, the scope of this discussion is relegated to what amounts

to virtual IP management and segmentation. A simple example of IP virtualization is

a VLAN: a single Ethernet port may support multiple virtual connections from

multiple IP addresses and networks, but they are virtually segmented using VLAN

tags. Each virtual IP connection over this single physical port is independent and

unaware of others' existence, but the switch is aware of each unique connection

and manages each one independently. Another example is virtual routing tables:

typically, a routing table and an IP network port share a 1:1 relationship, even

though that single port may host multiple virtual interfaces (such as VLANs or the

"eth0:1" virtual network adapters supported by Linux). The single routing table will

contain multiple routes for each virtual connection, but they are still managed in a

single table. Virtual routing tables change that paradigm into a one:many

relationship, where any single physical interface can maintain multiple routing tables,

each with multiple entries. This provides the interface with the ability to bring up (and

tear down) routing services on the .y for one network without interrupting other

services and routing tables on that same interface.

Hardware Virtualization
Hardware virtualization is very similar in concept to OS/Platform virtualization, and to

some degree is required for OS virtualization to occur. Hardware virtualization breaks

up pieces and locations of physical hardware into independent segments and

manages those segments as separate, individual components. Although they fall

into different classi. cations, both symmetric and asymmetric multiprocessing are

examples of hardware virtualization. In both instances, the process requesting CPU

time isn't aware which processor it's going to run on; it just requests CPU time from

the OS scheduler and the scheduler takes the responsibility of allocating processor

time. As far as the process is concerned, it could be spread across any number of

CPUs and any part of RAM, so long as it's able to run unaffected.

Another example of hardware virtualization is "slicing": carving out precise portions

of the system to run in a "walled garden," such as allocating a .xed 25% of CPU

resources to bulk encryption. If there are no processes that need to crunch

numbers on the CPU for block encryption, then that 25% of the CPU will go

unutilized. If too many processes need mathematical computations at once and

require more than 25%, they will be queued and run as a FIFO buffer because the

CPU isn't allowed to give out more than 25% of its resources to encryption. This

type of hardware virtualization is sometimes referred to as pre-allocation.

Asymmetric multiprocessing is a form of pre-allocation virtualization where certain

tasks are only run on certain CPUs. In contrast, symmetric multiprocessing is a form

of dynamic allocation, where CPUs are interchangeable and used as needed by any

part of the management system. Each classi.cation of hardware virtualization is

unique and has value, depending on the implementation. Pre-allocation virtualization

is perfect for very speci.c hardware tasks, such as of.oading functions to a highly

optimized, single-purpose chip. However, pre-allocation of commodity hardware can

cause arti.cial resource shortages if the allocated chunk is underutilized. Dynamic

allocation virtualization is a more standard approach and typically offers greater

bene. t when compared to pre-allocation. For true virtual service provisioning,

dynamic resource allocation is important because it allows complete hardware

management and control for resources as needed; virtual resources can be

allocated as long as hardware resources are still available. The downside to dynamic

allocation implementations is that they typically do not provide full control over the

dynamicity, leading to processes which can consume all available resources.

Storage Virtualization
As another example of a tried-and-true technology that's been dubbed

"virtualization," storage virtualization can be broken up into two general classes:

block virtualization and . le virtualization. Block virtualization is best summed up by

Storage Area Network (SAN) and Network Attached Storage (NAS) technologies:

distributed storage networks that appear to be single physical devices. Under the

hood, SAN devices themselves typically implement another form of Storage

Virtualization: RAID. iSCSI is another very common and speci.c virtual

implementation of block virtualization, allowing an operating system or application to

map a virtual block device, such as a mounted drive, to a local network adapter

(software or hardware) instead of a physical drive controller. The iSCSI network

adapter translates block calls from the application to network packets the SAN

understands and then back again, essentially providing a virtual hard drive.

File virtualization moves the virtual layer up into the more human-consumable . le

and directory structure level. Most . le virtualization technologies sit in front of

storage networks and keep track of which . les and directories reside on which

storage devices, maintaining global mappings of . le locations. When a request is

made to read a . le, the user may think this . le is statically located on their personal

remote drive, P:\My Files\ budget.xls; however, the . le virtualization appliance knows

that the . le is actually located on an SMB server in a data center across the globe at

//10.0.16.125/. nance/alice/budget-document/budget.xls. File-level virtualization

obfuscates the static virtual location pointer of a . le (in this case, on Alice's P:\ drive)

from the physical location, allowing the back-end network to remain dynamic. If the

IP address for the SMB server has to change, or the connection needs to be re-

routed to another data center entirely, only the virtual appliance's location map

needs to be updated, not every user that needs to access their P:\ drive.

Service Virtualization
And finally, we reach the macro de. nition of virtualization: service virtualization.

Service virtualization is consolidation of all of the above de. nitions into one catch-all

catchphrase. Service virtualization connects all of the components utilized in

delivering an application over the network, and includes the process of making all

pieces of an application work together regardless of where those pieces physically

reside. This is why service virtualization is typically used as an enabler for application

availability. For example, a web application typically has many parts: the user-facing

HTML; the application server that processes user input; the SOA gears that

coordinate service and data availability between each component; the database

back-end for user, application, and SOA data; the network that delivers the

application components; and the storage network that stores the application code

and data. Service virtualization allows each one of the pieces to function

independently and be "called up" as needed for the entire application to function

properly. When we look deeper into these individual application components, we

may see that the web server is load-balanced between 15 virtual machine operating

systems, the SOA requests are pushed through any number of XML gateways on

the wire, the database servers may be located in one of .ve global data centers, and

so on. Service virtualization combines these independent pieces and presents them

together to the user as a single, complete application.

While Service virtualization may encompass all the current de. nitions of

virtualization, it's by no means where IT will stop de. ning the term. With the

pervasive and varied use of the word (as well as the technologies it refers to), there

may never be a ". nal" de. nition for virtualization; it will continue to evolve and

expand as more and more technologies become less and less dependent on rigid

operating environments.

WHITE PAPER

Virtualization Defined - Eight Different Ways
®

4

WHITE PAPER

Virtualization Defined - Eight Different Ways
®



Introduction

Imagine a typical office...

Alice: Hey Bob, great news! I just heard our IT department is going to implement

virtualization in the data center. It's about time we supported virtualization.

Bob: That is great news; virtualization is the wave of the future. What are we

virtualizing? The servers? The web applications? The storage network?"

Alice: Hmmm…good question; they didn't specify. But how many different versions

of virtualization could there be?

Alice has asked the million-dollar question: What does "going virtual" really mean in

today's IT world? Virtualization as a concept is not new; computational environment

virtualization has been around since the . rst mainframe systems. But recently, the

term "virtualization" has become ubiquitous, representing any type of process

obfuscation where a process is somehow removed from its physical operating

environment. Because of this ambiguity, virtualization can almost be applied to any

and all parts of an IT infrastructure. For example, mobile device emulators are a form

of virtualization because the hardware platform normally required to run the mobile

operating system has been emulated, removing the OS binding from the hardware it

was written for. But this is just one example of one type of virtualization; there are

many de. nitions of the term "virtualization" .oating around in the current lexicon,

and all (or at least most) of them are correct, which can be quite confusing.

This paper focuses on virtualization as it pertains to the data center; but before

considering any type of data center virtualization, it's important to de. ne what

technology or category of service you're trying to virtualize. Generally speaking,

virtualization falls into three categories: Operating System, Storage, and

Applications. But these categories are very broad and don't adequately delineate the

key aspects of data center virtualization. It's helpful to distill these broader

categories into eight, speci.c categories to thoroughly understand the differences

(and similarities) between the de. nitions of virtualization.

Operating System Virtualization
The most prevalent form of virtualization today, virtual operating systems (or virtual

machines) are quickly becoming a core component of the IT infrastructure.

Generally, this is the form of virtualization end-users are most familiar with. Virtual

machines are typically full implementations of standard operating systems, such as

Windows Vista or RedHat Enterprise Linux, running simultaneously on the same

physical hardware. Virtual Machine Managers (VMMs) manage each virtual machine

individually; each OS instance is unaware that 1) it's virtual and 2) that other virtual

operating systems are (or may be) running at the same time. Companies like

Microsoft, VMware, Intel, and AMD are leading the way in breaking the physical

relationship between an operating system and its native hardware, extending this

paradigm into the data center. As the primary driving force, data center

consolidation is bringing the bene. ts of virtual machines to the mainstream market,

allowing enterprises to reduce the number of physical machines in their data centers

without reducing the number of underlying applications. This trend ultimately saves

enterprises money on hardware, co-location fees, rack space, power, cable

management, and more.

Application Server Virtualization
Application Server Virtualization has been around since the . rst load balancer, which

explains why "application virtualization" is often used as a synonym for advanced

load balancing. The core concept of application server virtualization is best seen with

a reverse proxy load balancer: an appliance or service that provides access to many

different application services transparently. In a typical deployment, a reverse proxy

will host a virtual interface accessible to the end user on the "front end." On the

"back end," the reverse proxy will load balance a number of different servers and

applications such as a web server. The virtual interface—often referred to as a Virtual

IP or VIP—is exposed to the outside world, represents itself as the actual web

server, and manages the connections to and from the web server as needed. This

enables the load balancer to manage multiple web servers or applications as a single

instance, providing a more secure and robust topology than one allowing users

direct access to individual web servers. This is a one:many (one-to-many)

virtualization representation: one server is presented to the world, hiding the

availability of multiple servers behind a reverse proxy appliance. Application Server

Virtualization can be applied to any (and all) types of application deployments and

architectures, from fronting application logic servers to distributing the load between

multiple web server platforms, and even all the way back in the data center to the

data and storage tiers with database virtualization.

Application Virtualization
While they may sound very similar, Application Server and Application Virtualization

are two completely different concepts. What we now refer to as application

virtualization we used to call "thin clients." The technology is exactly the same, only

the name has changed to make it more IT-PC (politically correct, not personal

computer). Softgrid by Microsoft is an excellent example of deploying application

virtualization. Although you may be running Microsoft Word 2007 locally on your

laptop, the binaries, personal information, and running state are all stored on,

managed, and delivered by Softgrid. Your local laptop provides the CPU and RAM

required to run the software, but nothing is installed locally on your own machine.

Other types of Application Virtualization include Microsoft Terminal Services and

browser-based applications. All of these implementations depend on the virtual

application running locally and the management and application logic running

remotely.

Management Virtualization
Chances are you already implement administrative virtualization throughout your IT

organization, but you probably don't refer to it by this phrase. If you implement

separate passwords for your root/administrator accounts between your mail and

web servers, and your mail administrators don't know the password to the web

server and vise versa, then you've deployed management virtualization in its most

basic form. The paradigm can be extended down to segmented administration roles

on one platform or box, which is where segmented administration becomes

"virtual." User and group policies in Microsoft Windows XP, 2003, and Vista are an

excellent example of virtualized administration rights: Alice may be in the backup

group for the 2003 Active Directory server, but not in the admin group. She has read

access to all the . les she needs to back up, but she doesn't have rights to install

new . les or software. Although she is logging into the same sever that the true

administrator is logs into, her user experience differs from the administrator.

Management virtualization is also a key concept in overall data center management.

It's critical that the network administrators have full access to all the infrastructure

gear, such as core routers and switches, but that they not have admin-level access

to servers.

Network Virtualization
Network virtualization may be the most ambiguous, speci. c de. nition of

virtualization. For brevity, the scope of this discussion is relegated to what amounts

to virtual IP management and segmentation. A simple example of IP virtualization is

a VLAN: a single Ethernet port may support multiple virtual connections from

multiple IP addresses and networks, but they are virtually segmented using VLAN

tags. Each virtual IP connection over this single physical port is independent and

unaware of others' existence, but the switch is aware of each unique connection

and manages each one independently. Another example is virtual routing tables:

typically, a routing table and an IP network port share a 1:1 relationship, even

though that single port may host multiple virtual interfaces (such as VLANs or the

"eth0:1" virtual network adapters supported by Linux). The single routing table will

contain multiple routes for each virtual connection, but they are still managed in a

single table. Virtual routing tables change that paradigm into a one:many

relationship, where any single physical interface can maintain multiple routing tables,

each with multiple entries. This provides the interface with the ability to bring up (and

tear down) routing services on the .y for one network without interrupting other

services and routing tables on that same interface.

Hardware Virtualization
Hardware virtualization is very similar in concept to OS/Platform virtualization, and to

some degree is required for OS virtualization to occur. Hardware virtualization breaks

up pieces and locations of physical hardware into independent segments and

manages those segments as separate, individual components. Although they fall

into different classi. cations, both symmetric and asymmetric multiprocessing are

examples of hardware virtualization. In both instances, the process requesting CPU

time isn't aware which processor it's going to run on; it just requests CPU time from

the OS scheduler and the scheduler takes the responsibility of allocating processor

time. As far as the process is concerned, it could be spread across any number of

CPUs and any part of RAM, so long as it's able to run unaffected.

Another example of hardware virtualization is "slicing": carving out precise portions

of the system to run in a "walled garden," such as allocating a .xed 25% of CPU

resources to bulk encryption. If there are no processes that need to crunch

numbers on the CPU for block encryption, then that 25% of the CPU will go

unutilized. If too many processes need mathematical computations at once and

require more than 25%, they will be queued and run as a FIFO buffer because the

CPU isn't allowed to give out more than 25% of its resources to encryption. This

type of hardware virtualization is sometimes referred to as pre-allocation.

Asymmetric multiprocessing is a form of pre-allocation virtualization where certain

tasks are only run on certain CPUs. In contrast, symmetric multiprocessing is a form

of dynamic allocation, where CPUs are interchangeable and used as needed by any

part of the management system. Each classi.cation of hardware virtualization is

unique and has value, depending on the implementation. Pre-allocation virtualization

is perfect for very speci.c hardware tasks, such as of.oading functions to a highly

optimized, single-purpose chip. However, pre-allocation of commodity hardware can

cause arti.cial resource shortages if the allocated chunk is underutilized. Dynamic

allocation virtualization is a more standard approach and typically offers greater

bene. t when compared to pre-allocation. For true virtual service provisioning,

dynamic resource allocation is important because it allows complete hardware

management and control for resources as needed; virtual resources can be

allocated as long as hardware resources are still available. The downside to dynamic

allocation implementations is that they typically do not provide full control over the

dynamicity, leading to processes which can consume all available resources.

Storage Virtualization
As another example of a tried-and-true technology that's been dubbed

"virtualization," storage virtualization can be broken up into two general classes:

block virtualization and . le virtualization. Block virtualization is best summed up by

Storage Area Network (SAN) and Network Attached Storage (NAS) technologies:

distributed storage networks that appear to be single physical devices. Under the

hood, SAN devices themselves typically implement another form of Storage

Virtualization: RAID. iSCSI is another very common and speci.c virtual

implementation of block virtualization, allowing an operating system or application to

map a virtual block device, such as a mounted drive, to a local network adapter

(software or hardware) instead of a physical drive controller. The iSCSI network

adapter translates block calls from the application to network packets the SAN

understands and then back again, essentially providing a virtual hard drive.

File virtualization moves the virtual layer up into the more human-consumable . le

and directory structure level. Most . le virtualization technologies sit in front of

storage networks and keep track of which . les and directories reside on which

storage devices, maintaining global mappings of . le locations. When a request is

made to read a . le, the user may think this . le is statically located on their personal

remote drive, P:\My Files\ budget.xls; however, the . le virtualization appliance knows

that the . le is actually located on an SMB server in a data center across the globe at

//10.0.16.125/. nance/alice/budget-document/budget.xls. File-level virtualization

obfuscates the static virtual location pointer of a . le (in this case, on Alice's P:\ drive)

from the physical location, allowing the back-end network to remain dynamic. If the

IP address for the SMB server has to change, or the connection needs to be re-

routed to another data center entirely, only the virtual appliance's location map

needs to be updated, not every user that needs to access their P:\ drive.

Service Virtualization
And finally, we reach the macro de. nition of virtualization: service virtualization.

Service virtualization is consolidation of all of the above de. nitions into one catch-all

catchphrase. Service virtualization connects all of the components utilized in

delivering an application over the network, and includes the process of making all

pieces of an application work together regardless of where those pieces physically

reside. This is why service virtualization is typically used as an enabler for application

availability. For example, a web application typically has many parts: the user-facing

HTML; the application server that processes user input; the SOA gears that

coordinate service and data availability between each component; the database

back-end for user, application, and SOA data; the network that delivers the

application components; and the storage network that stores the application code

and data. Service virtualization allows each one of the pieces to function

independently and be "called up" as needed for the entire application to function

properly. When we look deeper into these individual application components, we

may see that the web server is load-balanced between 15 virtual machine operating

systems, the SOA requests are pushed through any number of XML gateways on

the wire, the database servers may be located in one of .ve global data centers, and

so on. Service virtualization combines these independent pieces and presents them

together to the user as a single, complete application.

While Service virtualization may encompass all the current de. nitions of

virtualization, it's by no means where IT will stop de. ning the term. With the

pervasive and varied use of the word (as well as the technologies it refers to), there

may never be a ". nal" de. nition for virtualization; it will continue to evolve and

expand as more and more technologies become less and less dependent on rigid

operating environments.

WHITE PAPER

Virtualization Defined - Eight Different Ways
®

5

WHITE PAPER

Virtualization Defined - Eight Different Ways
®



Introduction

Imagine a typical office...

Alice: Hey Bob, great news! I just heard our IT department is going to implement

virtualization in the data center. It's about time we supported virtualization.

Bob: That is great news; virtualization is the wave of the future. What are we

virtualizing? The servers? The web applications? The storage network?"

Alice: Hmmm…good question; they didn't specify. But how many different versions

of virtualization could there be?

Alice has asked the million-dollar question: What does "going virtual" really mean in

today's IT world? Virtualization as a concept is not new; computational environment

virtualization has been around since the . rst mainframe systems. But recently, the

term "virtualization" has become ubiquitous, representing any type of process

obfuscation where a process is somehow removed from its physical operating

environment. Because of this ambiguity, virtualization can almost be applied to any

and all parts of an IT infrastructure. For example, mobile device emulators are a form

of virtualization because the hardware platform normally required to run the mobile

operating system has been emulated, removing the OS binding from the hardware it

was written for. But this is just one example of one type of virtualization; there are

many de. nitions of the term "virtualization" .oating around in the current lexicon,

and all (or at least most) of them are correct, which can be quite confusing.

This paper focuses on virtualization as it pertains to the data center; but before

considering any type of data center virtualization, it's important to de. ne what

technology or category of service you're trying to virtualize. Generally speaking,

virtualization falls into three categories: Operating System, Storage, and

Applications. But these categories are very broad and don't adequately delineate the

key aspects of data center virtualization. It's helpful to distill these broader

categories into eight, speci.c categories to thoroughly understand the differences

(and similarities) between the de. nitions of virtualization.

Operating System Virtualization
The most prevalent form of virtualization today, virtual operating systems (or virtual

machines) are quickly becoming a core component of the IT infrastructure.

Generally, this is the form of virtualization end-users are most familiar with. Virtual

machines are typically full implementations of standard operating systems, such as

Windows Vista or RedHat Enterprise Linux, running simultaneously on the same

physical hardware. Virtual Machine Managers (VMMs) manage each virtual machine

individually; each OS instance is unaware that 1) it's virtual and 2) that other virtual

operating systems are (or may be) running at the same time. Companies like

Microsoft, VMware, Intel, and AMD are leading the way in breaking the physical

relationship between an operating system and its native hardware, extending this

paradigm into the data center. As the primary driving force, data center

consolidation is bringing the bene. ts of virtual machines to the mainstream market,

allowing enterprises to reduce the number of physical machines in their data centers

without reducing the number of underlying applications. This trend ultimately saves

enterprises money on hardware, co-location fees, rack space, power, cable

management, and more.

Application Server Virtualization
Application Server Virtualization has been around since the . rst load balancer, which

explains why "application virtualization" is often used as a synonym for advanced

load balancing. The core concept of application server virtualization is best seen with

a reverse proxy load balancer: an appliance or service that provides access to many

different application services transparently. In a typical deployment, a reverse proxy

will host a virtual interface accessible to the end user on the "front end." On the

"back end," the reverse proxy will load balance a number of different servers and

applications such as a web server. The virtual interface—often referred to as a Virtual

IP or VIP—is exposed to the outside world, represents itself as the actual web

server, and manages the connections to and from the web server as needed. This

enables the load balancer to manage multiple web servers or applications as a single

instance, providing a more secure and robust topology than one allowing users

direct access to individual web servers. This is a one:many (one-to-many)

virtualization representation: one server is presented to the world, hiding the

availability of multiple servers behind a reverse proxy appliance. Application Server

Virtualization can be applied to any (and all) types of application deployments and

architectures, from fronting application logic servers to distributing the load between

multiple web server platforms, and even all the way back in the data center to the

data and storage tiers with database virtualization.

Application Virtualization
While they may sound very similar, Application Server and Application Virtualization

are two completely different concepts. What we now refer to as application

virtualization we used to call "thin clients." The technology is exactly the same, only

the name has changed to make it more IT-PC (politically correct, not personal

computer). Softgrid by Microsoft is an excellent example of deploying application

virtualization. Although you may be running Microsoft Word 2007 locally on your

laptop, the binaries, personal information, and running state are all stored on,

managed, and delivered by Softgrid. Your local laptop provides the CPU and RAM

required to run the software, but nothing is installed locally on your own machine.

Other types of Application Virtualization include Microsoft Terminal Services and

browser-based applications. All of these implementations depend on the virtual

application running locally and the management and application logic running

remotely.

Management Virtualization
Chances are you already implement administrative virtualization throughout your IT

organization, but you probably don't refer to it by this phrase. If you implement

separate passwords for your root/administrator accounts between your mail and

web servers, and your mail administrators don't know the password to the web

server and vise versa, then you've deployed management virtualization in its most

basic form. The paradigm can be extended down to segmented administration roles

on one platform or box, which is where segmented administration becomes

"virtual." User and group policies in Microsoft Windows XP, 2003, and Vista are an

excellent example of virtualized administration rights: Alice may be in the backup

group for the 2003 Active Directory server, but not in the admin group. She has read

access to all the . les she needs to back up, but she doesn't have rights to install

new . les or software. Although she is logging into the same sever that the true

administrator is logs into, her user experience differs from the administrator.

Management virtualization is also a key concept in overall data center management.

It's critical that the network administrators have full access to all the infrastructure

gear, such as core routers and switches, but that they not have admin-level access

to servers.

Network Virtualization
Network virtualization may be the most ambiguous, speci. c de. nition of

virtualization. For brevity, the scope of this discussion is relegated to what amounts

to virtual IP management and segmentation. A simple example of IP virtualization is

a VLAN: a single Ethernet port may support multiple virtual connections from

multiple IP addresses and networks, but they are virtually segmented using VLAN

tags. Each virtual IP connection over this single physical port is independent and

unaware of others' existence, but the switch is aware of each unique connection

and manages each one independently. Another example is virtual routing tables:

typically, a routing table and an IP network port share a 1:1 relationship, even

though that single port may host multiple virtual interfaces (such as VLANs or the

"eth0:1" virtual network adapters supported by Linux). The single routing table will

contain multiple routes for each virtual connection, but they are still managed in a

single table. Virtual routing tables change that paradigm into a one:many

relationship, where any single physical interface can maintain multiple routing tables,

each with multiple entries. This provides the interface with the ability to bring up (and

tear down) routing services on the .y for one network without interrupting other

services and routing tables on that same interface.

Hardware Virtualization
Hardware virtualization is very similar in concept to OS/Platform virtualization, and to

some degree is required for OS virtualization to occur. Hardware virtualization breaks

up pieces and locations of physical hardware into independent segments and

manages those segments as separate, individual components. Although they fall

into different classi. cations, both symmetric and asymmetric multiprocessing are

examples of hardware virtualization. In both instances, the process requesting CPU

time isn't aware which processor it's going to run on; it just requests CPU time from

the OS scheduler and the scheduler takes the responsibility of allocating processor

time. As far as the process is concerned, it could be spread across any number of

CPUs and any part of RAM, so long as it's able to run unaffected.

Another example of hardware virtualization is "slicing": carving out precise portions

of the system to run in a "walled garden," such as allocating a .xed 25% of CPU

resources to bulk encryption. If there are no processes that need to crunch

numbers on the CPU for block encryption, then that 25% of the CPU will go

unutilized. If too many processes need mathematical computations at once and

require more than 25%, they will be queued and run as a FIFO buffer because the

CPU isn't allowed to give out more than 25% of its resources to encryption. This

type of hardware virtualization is sometimes referred to as pre-allocation.

Asymmetric multiprocessing is a form of pre-allocation virtualization where certain

tasks are only run on certain CPUs. In contrast, symmetric multiprocessing is a form

of dynamic allocation, where CPUs are interchangeable and used as needed by any

part of the management system. Each classi.cation of hardware virtualization is

unique and has value, depending on the implementation. Pre-allocation virtualization

is perfect for very speci.c hardware tasks, such as of.oading functions to a highly

optimized, single-purpose chip. However, pre-allocation of commodity hardware can

cause arti.cial resource shortages if the allocated chunk is underutilized. Dynamic

allocation virtualization is a more standard approach and typically offers greater

bene. t when compared to pre-allocation. For true virtual service provisioning,

dynamic resource allocation is important because it allows complete hardware

management and control for resources as needed; virtual resources can be

allocated as long as hardware resources are still available. The downside to dynamic

allocation implementations is that they typically do not provide full control over the

dynamicity, leading to processes which can consume all available resources.

Storage Virtualization
As another example of a tried-and-true technology that's been dubbed

"virtualization," storage virtualization can be broken up into two general classes:

block virtualization and . le virtualization. Block virtualization is best summed up by

Storage Area Network (SAN) and Network Attached Storage (NAS) technologies:

distributed storage networks that appear to be single physical devices. Under the

hood, SAN devices themselves typically implement another form of Storage

Virtualization: RAID. iSCSI is another very common and speci.c virtual

implementation of block virtualization, allowing an operating system or application to

map a virtual block device, such as a mounted drive, to a local network adapter

(software or hardware) instead of a physical drive controller. The iSCSI network

adapter translates block calls from the application to network packets the SAN

understands and then back again, essentially providing a virtual hard drive.

File virtualization moves the virtual layer up into the more human-consumable . le

and directory structure level. Most . le virtualization technologies sit in front of

storage networks and keep track of which . les and directories reside on which

storage devices, maintaining global mappings of . le locations. When a request is

made to read a . le, the user may think this . le is statically located on their personal

remote drive, P:\My Files\ budget.xls; however, the . le virtualization appliance knows

that the . le is actually located on an SMB server in a data center across the globe at

//10.0.16.125/. nance/alice/budget-document/budget.xls. File-level virtualization

obfuscates the static virtual location pointer of a . le (in this case, on Alice's P:\ drive)

from the physical location, allowing the back-end network to remain dynamic. If the

IP address for the SMB server has to change, or the connection needs to be re-

routed to another data center entirely, only the virtual appliance's location map

needs to be updated, not every user that needs to access their P:\ drive.

Service Virtualization
And finally, we reach the macro de. nition of virtualization: service virtualization.

Service virtualization is consolidation of all of the above de. nitions into one catch-all

catchphrase. Service virtualization connects all of the components utilized in

delivering an application over the network, and includes the process of making all

pieces of an application work together regardless of where those pieces physically

reside. This is why service virtualization is typically used as an enabler for application

availability. For example, a web application typically has many parts: the user-facing

HTML; the application server that processes user input; the SOA gears that

coordinate service and data availability between each component; the database

back-end for user, application, and SOA data; the network that delivers the

application components; and the storage network that stores the application code

and data. Service virtualization allows each one of the pieces to function

independently and be "called up" as needed for the entire application to function

properly. When we look deeper into these individual application components, we

may see that the web server is load-balanced between 15 virtual machine operating

systems, the SOA requests are pushed through any number of XML gateways on

the wire, the database servers may be located in one of .ve global data centers, and

so on. Service virtualization combines these independent pieces and presents them

together to the user as a single, complete application.

While Service virtualization may encompass all the current de. nitions of

virtualization, it's by no means where IT will stop de. ning the term. With the

pervasive and varied use of the word (as well as the technologies it refers to), there

may never be a ". nal" de. nition for virtualization; it will continue to evolve and

expand as more and more technologies become less and less dependent on rigid

operating environments.

WHITE PAPER

Virtualization Defined - Eight Different Ways
®

6

WHITE PAPER

Virtualization Defined - Eight Different Ways
®



Introduction

Imagine a typical office...

Alice: Hey Bob, great news! I just heard our IT department is going to implement

virtualization in the data center. It's about time we supported virtualization.

Bob: That is great news; virtualization is the wave of the future. What are we

virtualizing? The servers? The web applications? The storage network?"

Alice: Hmmm…good question; they didn't specify. But how many different versions

of virtualization could there be?

Alice has asked the million-dollar question: What does "going virtual" really mean in

today's IT world? Virtualization as a concept is not new; computational environment

virtualization has been around since the . rst mainframe systems. But recently, the

term "virtualization" has become ubiquitous, representing any type of process

obfuscation where a process is somehow removed from its physical operating

environment. Because of this ambiguity, virtualization can almost be applied to any

and all parts of an IT infrastructure. For example, mobile device emulators are a form

of virtualization because the hardware platform normally required to run the mobile

operating system has been emulated, removing the OS binding from the hardware it

was written for. But this is just one example of one type of virtualization; there are

many de. nitions of the term "virtualization" .oating around in the current lexicon,

and all (or at least most) of them are correct, which can be quite confusing.

This paper focuses on virtualization as it pertains to the data center; but before

considering any type of data center virtualization, it's important to de. ne what

technology or category of service you're trying to virtualize. Generally speaking,

virtualization falls into three categories: Operating System, Storage, and

Applications. But these categories are very broad and don't adequately delineate the

key aspects of data center virtualization. It's helpful to distill these broader

categories into eight, speci.c categories to thoroughly understand the differences

(and similarities) between the de. nitions of virtualization.

Operating System Virtualization
The most prevalent form of virtualization today, virtual operating systems (or virtual

machines) are quickly becoming a core component of the IT infrastructure.

Generally, this is the form of virtualization end-users are most familiar with. Virtual

machines are typically full implementations of standard operating systems, such as

Windows Vista or RedHat Enterprise Linux, running simultaneously on the same

physical hardware. Virtual Machine Managers (VMMs) manage each virtual machine

individually; each OS instance is unaware that 1) it's virtual and 2) that other virtual

operating systems are (or may be) running at the same time. Companies like

Microsoft, VMware, Intel, and AMD are leading the way in breaking the physical

relationship between an operating system and its native hardware, extending this

paradigm into the data center. As the primary driving force, data center

consolidation is bringing the bene. ts of virtual machines to the mainstream market,

allowing enterprises to reduce the number of physical machines in their data centers

without reducing the number of underlying applications. This trend ultimately saves

enterprises money on hardware, co-location fees, rack space, power, cable

management, and more.

Application Server Virtualization
Application Server Virtualization has been around since the . rst load balancer, which

explains why "application virtualization" is often used as a synonym for advanced

load balancing. The core concept of application server virtualization is best seen with

a reverse proxy load balancer: an appliance or service that provides access to many

different application services transparently. In a typical deployment, a reverse proxy

will host a virtual interface accessible to the end user on the "front end." On the

"back end," the reverse proxy will load balance a number of different servers and

applications such as a web server. The virtual interface—often referred to as a Virtual

IP or VIP—is exposed to the outside world, represents itself as the actual web

server, and manages the connections to and from the web server as needed. This

enables the load balancer to manage multiple web servers or applications as a single

instance, providing a more secure and robust topology than one allowing users

direct access to individual web servers. This is a one:many (one-to-many)

virtualization representation: one server is presented to the world, hiding the

availability of multiple servers behind a reverse proxy appliance. Application Server

Virtualization can be applied to any (and all) types of application deployments and

architectures, from fronting application logic servers to distributing the load between

multiple web server platforms, and even all the way back in the data center to the

data and storage tiers with database virtualization.

Application Virtualization
While they may sound very similar, Application Server and Application Virtualization

are two completely different concepts. What we now refer to as application

virtualization we used to call "thin clients." The technology is exactly the same, only

the name has changed to make it more IT-PC (politically correct, not personal

computer). Softgrid by Microsoft is an excellent example of deploying application

virtualization. Although you may be running Microsoft Word 2007 locally on your

laptop, the binaries, personal information, and running state are all stored on,

managed, and delivered by Softgrid. Your local laptop provides the CPU and RAM

required to run the software, but nothing is installed locally on your own machine.

Other types of Application Virtualization include Microsoft Terminal Services and

browser-based applications. All of these implementations depend on the virtual

application running locally and the management and application logic running

remotely.

Management Virtualization
Chances are you already implement administrative virtualization throughout your IT

organization, but you probably don't refer to it by this phrase. If you implement

separate passwords for your root/administrator accounts between your mail and

web servers, and your mail administrators don't know the password to the web

server and vise versa, then you've deployed management virtualization in its most

basic form. The paradigm can be extended down to segmented administration roles

on one platform or box, which is where segmented administration becomes

"virtual." User and group policies in Microsoft Windows XP, 2003, and Vista are an

excellent example of virtualized administration rights: Alice may be in the backup

group for the 2003 Active Directory server, but not in the admin group. She has read

access to all the . les she needs to back up, but she doesn't have rights to install

new . les or software. Although she is logging into the same sever that the true

administrator is logs into, her user experience differs from the administrator.

Management virtualization is also a key concept in overall data center management.

It's critical that the network administrators have full access to all the infrastructure

gear, such as core routers and switches, but that they not have admin-level access

to servers.

Network Virtualization
Network virtualization may be the most ambiguous, speci. c de. nition of

virtualization. For brevity, the scope of this discussion is relegated to what amounts

to virtual IP management and segmentation. A simple example of IP virtualization is

a VLAN: a single Ethernet port may support multiple virtual connections from

multiple IP addresses and networks, but they are virtually segmented using VLAN

tags. Each virtual IP connection over this single physical port is independent and

unaware of others' existence, but the switch is aware of each unique connection

and manages each one independently. Another example is virtual routing tables:

typically, a routing table and an IP network port share a 1:1 relationship, even

though that single port may host multiple virtual interfaces (such as VLANs or the

"eth0:1" virtual network adapters supported by Linux). The single routing table will

contain multiple routes for each virtual connection, but they are still managed in a

single table. Virtual routing tables change that paradigm into a one:many

relationship, where any single physical interface can maintain multiple routing tables,

each with multiple entries. This provides the interface with the ability to bring up (and

tear down) routing services on the .y for one network without interrupting other

services and routing tables on that same interface.

Hardware Virtualization
Hardware virtualization is very similar in concept to OS/Platform virtualization, and to

some degree is required for OS virtualization to occur. Hardware virtualization breaks

up pieces and locations of physical hardware into independent segments and

manages those segments as separate, individual components. Although they fall

into different classi. cations, both symmetric and asymmetric multiprocessing are

examples of hardware virtualization. In both instances, the process requesting CPU

time isn't aware which processor it's going to run on; it just requests CPU time from

the OS scheduler and the scheduler takes the responsibility of allocating processor

time. As far as the process is concerned, it could be spread across any number of

CPUs and any part of RAM, so long as it's able to run unaffected.

Another example of hardware virtualization is "slicing": carving out precise portions

of the system to run in a "walled garden," such as allocating a .xed 25% of CPU

resources to bulk encryption. If there are no processes that need to crunch

numbers on the CPU for block encryption, then that 25% of the CPU will go

unutilized. If too many processes need mathematical computations at once and

require more than 25%, they will be queued and run as a FIFO buffer because the

CPU isn't allowed to give out more than 25% of its resources to encryption. This

type of hardware virtualization is sometimes referred to as pre-allocation.

Asymmetric multiprocessing is a form of pre-allocation virtualization where certain

tasks are only run on certain CPUs. In contrast, symmetric multiprocessing is a form

of dynamic allocation, where CPUs are interchangeable and used as needed by any

part of the management system. Each classi.cation of hardware virtualization is

unique and has value, depending on the implementation. Pre-allocation virtualization

is perfect for very speci.c hardware tasks, such as of.oading functions to a highly

optimized, single-purpose chip. However, pre-allocation of commodity hardware can

cause arti.cial resource shortages if the allocated chunk is underutilized. Dynamic

allocation virtualization is a more standard approach and typically offers greater

bene. t when compared to pre-allocation. For true virtual service provisioning,

dynamic resource allocation is important because it allows complete hardware

management and control for resources as needed; virtual resources can be

allocated as long as hardware resources are still available. The downside to dynamic

allocation implementations is that they typically do not provide full control over the

dynamicity, leading to processes which can consume all available resources.

Storage Virtualization
As another example of a tried-and-true technology that's been dubbed

"virtualization," storage virtualization can be broken up into two general classes:

block virtualization and . le virtualization. Block virtualization is best summed up by

Storage Area Network (SAN) and Network Attached Storage (NAS) technologies:

distributed storage networks that appear to be single physical devices. Under the

hood, SAN devices themselves typically implement another form of Storage

Virtualization: RAID. iSCSI is another very common and speci.c virtual

implementation of block virtualization, allowing an operating system or application to

map a virtual block device, such as a mounted drive, to a local network adapter

(software or hardware) instead of a physical drive controller. The iSCSI network

adapter translates block calls from the application to network packets the SAN

understands and then back again, essentially providing a virtual hard drive.

File virtualization moves the virtual layer up into the more human-consumable . le

and directory structure level. Most . le virtualization technologies sit in front of

storage networks and keep track of which . les and directories reside on which

storage devices, maintaining global mappings of . le locations. When a request is

made to read a . le, the user may think this . le is statically located on their personal

remote drive, P:\My Files\ budget.xls; however, the . le virtualization appliance knows

that the . le is actually located on an SMB server in a data center across the globe at

//10.0.16.125/. nance/alice/budget-document/budget.xls. File-level virtualization

obfuscates the static virtual location pointer of a . le (in this case, on Alice's P:\ drive)

from the physical location, allowing the back-end network to remain dynamic. If the

IP address for the SMB server has to change, or the connection needs to be re-

routed to another data center entirely, only the virtual appliance's location map

needs to be updated, not every user that needs to access their P:\ drive.

Service Virtualization
And finally, we reach the macro de. nition of virtualization: service virtualization.

Service virtualization is consolidation of all of the above de. nitions into one catch-all

catchphrase. Service virtualization connects all of the components utilized in

delivering an application over the network, and includes the process of making all

pieces of an application work together regardless of where those pieces physically

reside. This is why service virtualization is typically used as an enabler for application

availability. For example, a web application typically has many parts: the user-facing

HTML; the application server that processes user input; the SOA gears that

coordinate service and data availability between each component; the database

back-end for user, application, and SOA data; the network that delivers the

application components; and the storage network that stores the application code

and data. Service virtualization allows each one of the pieces to function

independently and be "called up" as needed for the entire application to function

properly. When we look deeper into these individual application components, we

may see that the web server is load-balanced between 15 virtual machine operating

systems, the SOA requests are pushed through any number of XML gateways on

the wire, the database servers may be located in one of .ve global data centers, and

so on. Service virtualization combines these independent pieces and presents them

together to the user as a single, complete application.

While Service virtualization may encompass all the current de. nitions of

virtualization, it's by no means where IT will stop de. ning the term. With the

pervasive and varied use of the word (as well as the technologies it refers to), there

may never be a ". nal" de. nition for virtualization; it will continue to evolve and

expand as more and more technologies become less and less dependent on rigid

operating environments.

WHITE PAPER

Virtualization Defined - Eight Different Ways
®

7

F5 Networks, Inc.
401 Elliott Avenue West, Seattle, WA 98119
888-882-4447 www.f5.com

Americas
info@f5.com

Asia-Pacific
apacinfo@f5.com

Europe/Middle-East/Africa
emeainfo@f5.com

Japan
f5j-info@f5.com

©2015 F5 Networks, Inc. All rights reserved. F5, F5 Networks, and the F5 logo are trademarks of F5 Networks, Inc. in the U.S. and in certain other countries. Other F5
trademarks are identified at f5.com. Any other products, services, or company names referenced herein may be trademarks of their respective owners with no endorsement or
affiliation, express or implied, claimed by F5. No Doc Number Available 0113

WHITE PAPER

Virtualization Defined - Eight Different Ways
®


